-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathlinalg_impl.py
1588 lines (1354 loc) · 64.1 KB
/
linalg_impl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Operations for linear algebra."""
import numpy as np
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.framework import tensor_shape
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import array_ops_stack
from tensorflow.python.ops import check_ops
from tensorflow.python.ops import cond as tf_cond
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import gen_linalg_ops
from tensorflow.python.ops import linalg_ops
from tensorflow.python.ops import map_fn
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import special_math_ops
from tensorflow.python.ops import stateless_random_ops
from tensorflow.python.ops import while_loop
from tensorflow.python.util import dispatch
from tensorflow.python.util.tf_export import tf_export
# Linear algebra ops.
band_part = array_ops.matrix_band_part
cholesky = linalg_ops.cholesky
cholesky_solve = linalg_ops.cholesky_solve
det = linalg_ops.matrix_determinant
slogdet = gen_linalg_ops.log_matrix_determinant
tf_export('linalg.slogdet')(dispatch.add_dispatch_support(slogdet))
diag = array_ops.matrix_diag
diag_part = array_ops.matrix_diag_part
eigh = linalg_ops.self_adjoint_eig
eigvalsh = linalg_ops.self_adjoint_eigvals
einsum = special_math_ops.einsum
eye = linalg_ops.eye
inv = linalg_ops.matrix_inverse
logm = gen_linalg_ops.matrix_logarithm
lu = gen_linalg_ops.lu
tf_export('linalg.logm')(dispatch.add_dispatch_support(logm))
lstsq = linalg_ops.matrix_solve_ls
norm = linalg_ops.norm
qr = linalg_ops.qr
set_diag = array_ops.matrix_set_diag
solve = linalg_ops.matrix_solve
sqrtm = linalg_ops.matrix_square_root
svd = linalg_ops.svd
tensordot = math_ops.tensordot
trace = math_ops.trace
transpose = array_ops.matrix_transpose
triangular_solve = linalg_ops.matrix_triangular_solve
@tf_export('linalg.logdet')
@dispatch.add_dispatch_support
def logdet(matrix, name=None):
"""Computes log of the determinant of a hermitian positive definite matrix.
```python
# Compute the determinant of a matrix while reducing the chance of over- or
underflow:
A = ... # shape 10 x 10
det = tf.exp(tf.linalg.logdet(A)) # scalar
```
Args:
matrix: A `Tensor`. Must be `float16`, `float32`, `float64`, `complex64`,
or `complex128` with shape `[..., M, M]`.
name: A name to give this `Op`. Defaults to `logdet`.
Returns:
The natural log of the determinant of `matrix`.
@compatibility(numpy)
Equivalent to numpy.linalg.slogdet, although no sign is returned since only
hermitian positive definite matrices are supported.
@end_compatibility
"""
# This uses the property that the log det(A) = 2*sum(log(real(diag(C))))
# where C is the cholesky decomposition of A.
with ops.name_scope(name, 'logdet', [matrix]):
chol = gen_linalg_ops.cholesky(matrix)
return 2.0 * math_ops.reduce_sum(
math_ops.log(math_ops.real(array_ops.matrix_diag_part(chol))),
axis=[-1])
@tf_export('linalg.adjoint')
@dispatch.add_dispatch_support
def adjoint(matrix, name=None):
"""Transposes the last two dimensions of and conjugates tensor `matrix`.
For example:
```python
x = tf.constant([[1 + 1j, 2 + 2j, 3 + 3j],
[4 + 4j, 5 + 5j, 6 + 6j]])
tf.linalg.adjoint(x) # [[1 - 1j, 4 - 4j],
# [2 - 2j, 5 - 5j],
# [3 - 3j, 6 - 6j]]
```
Args:
matrix: A `Tensor`. Must be `float16`, `float32`, `float64`, `complex64`,
or `complex128` with shape `[..., M, M]`.
name: A name to give this `Op` (optional).
Returns:
The adjoint (a.k.a. Hermitian transpose a.k.a. conjugate transpose) of
matrix.
"""
with ops.name_scope(name, 'adjoint', [matrix]):
matrix = ops.convert_to_tensor(matrix, name='matrix')
return array_ops.matrix_transpose(matrix, conjugate=True)
# This section is ported nearly verbatim from Eigen's implementation:
# https://eigen.tuxfamily.org/dox/unsupported/MatrixExponential_8h_source.html
def _matrix_exp_pade3(matrix):
"""3rd-order Pade approximant for matrix exponential."""
b = [120.0, 60.0, 12.0]
b = [constant_op.constant(x, matrix.dtype) for x in b]
ident = linalg_ops.eye(
array_ops.shape(matrix)[-2],
batch_shape=array_ops.shape(matrix)[:-2],
dtype=matrix.dtype)
matrix_2 = math_ops.matmul(matrix, matrix)
tmp = matrix_2 + b[1] * ident
matrix_u = math_ops.matmul(matrix, tmp)
matrix_v = b[2] * matrix_2 + b[0] * ident
return matrix_u, matrix_v
def _matrix_exp_pade5(matrix):
"""5th-order Pade approximant for matrix exponential."""
b = [30240.0, 15120.0, 3360.0, 420.0, 30.0]
b = [constant_op.constant(x, matrix.dtype) for x in b]
ident = linalg_ops.eye(
array_ops.shape(matrix)[-2],
batch_shape=array_ops.shape(matrix)[:-2],
dtype=matrix.dtype)
matrix_2 = math_ops.matmul(matrix, matrix)
matrix_4 = math_ops.matmul(matrix_2, matrix_2)
tmp = matrix_4 + b[3] * matrix_2 + b[1] * ident
matrix_u = math_ops.matmul(matrix, tmp)
matrix_v = b[4] * matrix_4 + b[2] * matrix_2 + b[0] * ident
return matrix_u, matrix_v
def _matrix_exp_pade7(matrix):
"""7th-order Pade approximant for matrix exponential."""
b = [17297280.0, 8648640.0, 1995840.0, 277200.0, 25200.0, 1512.0, 56.0]
b = [constant_op.constant(x, matrix.dtype) for x in b]
ident = linalg_ops.eye(
array_ops.shape(matrix)[-2],
batch_shape=array_ops.shape(matrix)[:-2],
dtype=matrix.dtype)
matrix_2 = math_ops.matmul(matrix, matrix)
matrix_4 = math_ops.matmul(matrix_2, matrix_2)
matrix_6 = math_ops.matmul(matrix_4, matrix_2)
tmp = matrix_6 + b[5] * matrix_4 + b[3] * matrix_2 + b[1] * ident
matrix_u = math_ops.matmul(matrix, tmp)
matrix_v = b[6] * matrix_6 + b[4] * matrix_4 + b[2] * matrix_2 + b[0] * ident
return matrix_u, matrix_v
def _matrix_exp_pade9(matrix):
"""9th-order Pade approximant for matrix exponential."""
b = [
17643225600.0, 8821612800.0, 2075673600.0, 302702400.0, 30270240.0,
2162160.0, 110880.0, 3960.0, 90.0
]
b = [constant_op.constant(x, matrix.dtype) for x in b]
ident = linalg_ops.eye(
array_ops.shape(matrix)[-2],
batch_shape=array_ops.shape(matrix)[:-2],
dtype=matrix.dtype)
matrix_2 = math_ops.matmul(matrix, matrix)
matrix_4 = math_ops.matmul(matrix_2, matrix_2)
matrix_6 = math_ops.matmul(matrix_4, matrix_2)
matrix_8 = math_ops.matmul(matrix_6, matrix_2)
tmp = (
matrix_8 + b[7] * matrix_6 + b[5] * matrix_4 + b[3] * matrix_2 +
b[1] * ident)
matrix_u = math_ops.matmul(matrix, tmp)
matrix_v = (
b[8] * matrix_8 + b[6] * matrix_6 + b[4] * matrix_4 + b[2] * matrix_2 +
b[0] * ident)
return matrix_u, matrix_v
def _matrix_exp_pade13(matrix):
"""13th-order Pade approximant for matrix exponential."""
b = [
64764752532480000.0, 32382376266240000.0, 7771770303897600.0,
1187353796428800.0, 129060195264000.0, 10559470521600.0, 670442572800.0,
33522128640.0, 1323241920.0, 40840800.0, 960960.0, 16380.0, 182.0
]
b = [constant_op.constant(x, matrix.dtype) for x in b]
ident = linalg_ops.eye(
array_ops.shape(matrix)[-2],
batch_shape=array_ops.shape(matrix)[:-2],
dtype=matrix.dtype)
matrix_2 = math_ops.matmul(matrix, matrix)
matrix_4 = math_ops.matmul(matrix_2, matrix_2)
matrix_6 = math_ops.matmul(matrix_4, matrix_2)
tmp_u = (
math_ops.matmul(matrix_6, matrix_6 + b[11] * matrix_4 + b[9] * matrix_2) +
b[7] * matrix_6 + b[5] * matrix_4 + b[3] * matrix_2 + b[1] * ident)
matrix_u = math_ops.matmul(matrix, tmp_u)
tmp_v = b[12] * matrix_6 + b[10] * matrix_4 + b[8] * matrix_2
matrix_v = (
math_ops.matmul(matrix_6, tmp_v) + b[6] * matrix_6 + b[4] * matrix_4 +
b[2] * matrix_2 + b[0] * ident)
return matrix_u, matrix_v
@tf_export('linalg.expm')
@dispatch.add_dispatch_support
def matrix_exponential(input, name=None): # pylint: disable=redefined-builtin
r"""Computes the matrix exponential of one or more square matrices.
$$exp(A) = \sum_{n=0}^\infty A^n/n!$$
The exponential is computed using a combination of the scaling and squaring
method and the Pade approximation. Details can be found in:
Nicholas J. Higham, "The scaling and squaring method for the matrix
exponential revisited," SIAM J. Matrix Anal. Applic., 26:1179-1193, 2005.
The input is a tensor of shape `[..., M, M]` whose inner-most 2 dimensions
form square matrices. The output is a tensor of the same shape as the input
containing the exponential for all input submatrices `[..., :, :]`.
Args:
input: A `Tensor`. Must be `float16`, `float32`, `float64`, `complex64`, or
`complex128` with shape `[..., M, M]`.
name: A name to give this `Op` (optional).
Returns:
the matrix exponential of the input.
Raises:
ValueError: An unsupported type is provided as input.
@compatibility(scipy)
Equivalent to scipy.linalg.expm
@end_compatibility
"""
with ops.name_scope(name, 'matrix_exponential', [input]):
matrix = ops.convert_to_tensor(input, name='input')
if matrix.shape[-2:] == [0, 0]:
return matrix
batch_shape = matrix.shape[:-2]
if not batch_shape.is_fully_defined():
batch_shape = array_ops.shape(matrix)[:-2]
# reshaping the batch makes the where statements work better
matrix = array_ops.reshape(
matrix, array_ops.concat(([-1], array_ops.shape(matrix)[-2:]), axis=0))
l1_norm = math_ops.reduce_max(
math_ops.reduce_sum(
math_ops.abs(matrix),
axis=array_ops.size(array_ops.shape(matrix)) - 2),
axis=-1)[..., array_ops.newaxis, array_ops.newaxis]
const = lambda x: constant_op.constant(x, l1_norm.dtype)
def _nest_where(vals, cases):
assert len(vals) == len(cases) - 1
if len(vals) == 1:
return array_ops.where_v2(
math_ops.less(l1_norm, const(vals[0])), cases[0], cases[1])
else:
return array_ops.where_v2(
math_ops.less(l1_norm, const(vals[0])), cases[0],
_nest_where(vals[1:], cases[1:]))
if matrix.dtype in [dtypes.float16, dtypes.float32, dtypes.complex64]:
maxnorm = const(3.925724783138660)
squarings = math_ops.maximum(
math_ops.floor(
math_ops.log(l1_norm / maxnorm) / math_ops.log(const(2.0))), 0)
u3, v3 = _matrix_exp_pade3(matrix)
u5, v5 = _matrix_exp_pade5(matrix)
u7, v7 = _matrix_exp_pade7(
matrix /
math_ops.cast(math_ops.pow(const(2.0), squarings), matrix.dtype))
conds = (4.258730016922831e-001, 1.880152677804762e+000)
u = _nest_where(conds, (u3, u5, u7))
v = _nest_where(conds, (v3, v5, v7))
elif matrix.dtype in [dtypes.float64, dtypes.complex128]:
maxnorm = const(5.371920351148152)
squarings = math_ops.maximum(
math_ops.floor(
math_ops.log(l1_norm / maxnorm) / math_ops.log(const(2.0))), 0)
u3, v3 = _matrix_exp_pade3(matrix)
u5, v5 = _matrix_exp_pade5(matrix)
u7, v7 = _matrix_exp_pade7(matrix)
u9, v9 = _matrix_exp_pade9(matrix)
u13, v13 = _matrix_exp_pade13(
matrix /
math_ops.cast(math_ops.pow(const(2.0), squarings), matrix.dtype))
conds = (1.495585217958292e-002, 2.539398330063230e-001,
9.504178996162932e-001, 2.097847961257068e+000)
u = _nest_where(conds, (u3, u5, u7, u9, u13))
v = _nest_where(conds, (v3, v5, v7, v9, v13))
else:
raise ValueError('tf.linalg.expm does not support matrices of type %s' %
matrix.dtype)
is_finite = math_ops.is_finite(math_ops.reduce_max(l1_norm))
nan = constant_op.constant(np.nan, matrix.dtype)
result = tf_cond.cond(
is_finite, lambda: linalg_ops.matrix_solve(-u + v, u + v),
lambda: array_ops.fill(array_ops.shape(matrix), nan))
max_squarings = math_ops.reduce_max(squarings)
i = const(0.0)
def c(i, _):
return tf_cond.cond(is_finite,
lambda: math_ops.less(i, max_squarings),
lambda: constant_op.constant(False))
def b(i, r):
return i + 1, array_ops.where_v2(
math_ops.less(i, squarings), math_ops.matmul(r, r), r)
_, result = while_loop.while_loop(c, b, [i, result])
if not matrix.shape.is_fully_defined():
return array_ops.reshape(
result,
array_ops.concat((batch_shape, array_ops.shape(result)[-2:]), axis=0))
return array_ops.reshape(result, batch_shape.concatenate(result.shape[-2:]))
@tf_export('linalg.banded_triangular_solve', v1=[])
def banded_triangular_solve(
bands,
rhs,
lower=True,
adjoint=False, # pylint: disable=redefined-outer-name
name=None):
r"""Solve triangular systems of equations with a banded solver.
`bands` is a tensor of shape `[..., K, M]`, where `K` represents the number
of bands stored. This corresponds to a batch of `M` by `M` matrices, whose
`K` subdiagonals (when `lower` is `True`) are stored.
This operator broadcasts the batch dimensions of `bands` and the batch
dimensions of `rhs`.
Examples:
Storing 2 bands of a 3x3 matrix.
Note that first element in the second row is ignored due to
the 'LEFT_RIGHT' padding.
>>> x = [[2., 3., 4.], [1., 2., 3.]]
>>> x2 = [[2., 3., 4.], [10000., 2., 3.]]
>>> y = tf.zeros([3, 3])
>>> z = tf.linalg.set_diag(y, x, align='LEFT_RIGHT', k=(-1, 0))
>>> z
<tf.Tensor: shape=(3, 3), dtype=float32, numpy=
array([[2., 0., 0.],
[2., 3., 0.],
[0., 3., 4.]], dtype=float32)>
>>> soln = tf.linalg.banded_triangular_solve(x, tf.ones([3, 1]))
>>> soln
<tf.Tensor: shape=(3, 1), dtype=float32, numpy=
array([[0.5 ],
[0. ],
[0.25]], dtype=float32)>
>>> are_equal = soln == tf.linalg.banded_triangular_solve(x2, tf.ones([3, 1]))
>>> tf.reduce_all(are_equal).numpy()
True
>>> are_equal = soln == tf.linalg.triangular_solve(z, tf.ones([3, 1]))
>>> tf.reduce_all(are_equal).numpy()
True
Storing 2 superdiagonals of a 4x4 matrix. Because of the 'LEFT_RIGHT' padding
the last element of the first row is ignored.
>>> x = [[2., 3., 4., 5.], [-1., -2., -3., -4.]]
>>> y = tf.zeros([4, 4])
>>> z = tf.linalg.set_diag(y, x, align='LEFT_RIGHT', k=(0, 1))
>>> z
<tf.Tensor: shape=(4, 4), dtype=float32, numpy=
array([[-1., 2., 0., 0.],
[ 0., -2., 3., 0.],
[ 0., 0., -3., 4.],
[ 0., 0., -0., -4.]], dtype=float32)>
>>> soln = tf.linalg.banded_triangular_solve(x, tf.ones([4, 1]), lower=False)
>>> soln
<tf.Tensor: shape=(4, 1), dtype=float32, numpy=
array([[-4. ],
[-1.5 ],
[-0.6666667],
[-0.25 ]], dtype=float32)>
>>> are_equal = (soln == tf.linalg.triangular_solve(
... z, tf.ones([4, 1]), lower=False))
>>> tf.reduce_all(are_equal).numpy()
True
Args:
bands: A `Tensor` describing the bands of the left hand side, with shape
`[..., K, M]`. The `K` rows correspond to the diagonal to the `K - 1`-th
diagonal (the diagonal is the top row) when `lower` is `True` and
otherwise the `K - 1`-th superdiagonal to the diagonal (the diagonal is
the bottom row) when `lower` is `False`. The bands are stored with
'LEFT_RIGHT' alignment, where the superdiagonals are padded on the right
and subdiagonals are padded on the left. This is the alignment cuSPARSE
uses. See `tf.linalg.set_diag` for more details.
rhs: A `Tensor` of shape [..., M] or [..., M, N] and with the same dtype as
`diagonals`. Note that if the shape of `rhs` and/or `diags` isn't known
statically, `rhs` will be treated as a matrix rather than a vector.
lower: An optional `bool`. Defaults to `True`. Boolean indicating whether
`bands` represents a lower or upper triangular matrix.
adjoint: An optional `bool`. Defaults to `False`. Boolean indicating whether
to solve with the matrix's block-wise adjoint.
name: A name to give this `Op` (optional).
Returns:
A `Tensor` of shape [..., M] or [..., M, N] containing the solutions.
"""
with ops.name_scope(name, 'banded_triangular_solve', [bands, rhs]):
return gen_linalg_ops.banded_triangular_solve(
bands, rhs, lower=lower, adjoint=adjoint)
@tf_export('linalg.tridiagonal_solve')
@dispatch.add_dispatch_support
def tridiagonal_solve(diagonals,
rhs,
diagonals_format='compact',
transpose_rhs=False,
conjugate_rhs=False,
name=None,
partial_pivoting=True,
perturb_singular=False):
r"""Solves tridiagonal systems of equations.
The input can be supplied in various formats: `matrix`, `sequence` and
`compact`, specified by the `diagonals_format` arg.
In `matrix` format, `diagonals` must be a tensor of shape `[..., M, M]`, with
two inner-most dimensions representing the square tridiagonal matrices.
Elements outside of the three diagonals will be ignored.
In `sequence` format, `diagonals` are supplied as a tuple or list of three
tensors of shapes `[..., N]`, `[..., M]`, `[..., N]` representing
superdiagonals, diagonals, and subdiagonals, respectively. `N` can be either
`M-1` or `M`; in the latter case, the last element of superdiagonal and the
first element of subdiagonal will be ignored.
In `compact` format the three diagonals are brought together into one tensor
of shape `[..., 3, M]`, with last two dimensions containing superdiagonals,
diagonals, and subdiagonals, in order. Similarly to `sequence` format,
elements `diagonals[..., 0, M-1]` and `diagonals[..., 2, 0]` are ignored.
The `compact` format is recommended as the one with best performance. In case
you need to cast a tensor into a compact format manually, use `tf.gather_nd`.
An example for a tensor of shape [m, m]:
```python
rhs = tf.constant([...])
matrix = tf.constant([[...]])
m = matrix.shape[0]
dummy_idx = [0, 0] # An arbitrary element to use as a dummy
indices = [[[i, i + 1] for i in range(m - 1)] + [dummy_idx], # Superdiagonal
[[i, i] for i in range(m)], # Diagonal
[dummy_idx] + [[i + 1, i] for i in range(m - 1)]] # Subdiagonal
diagonals=tf.gather_nd(matrix, indices)
x = tf.linalg.tridiagonal_solve(diagonals, rhs)
```
Regardless of the `diagonals_format`, `rhs` is a tensor of shape `[..., M]` or
`[..., M, K]`. The latter allows to simultaneously solve K systems with the
same left-hand sides and K different right-hand sides. If `transpose_rhs`
is set to `True` the expected shape is `[..., M]` or `[..., K, M]`.
The batch dimensions, denoted as `...`, must be the same in `diagonals` and
`rhs`.
The output is a tensor of the same shape as `rhs`: either `[..., M]` or
`[..., M, K]`.
The op isn't guaranteed to raise an error if the input matrix is not
invertible. `tf.debugging.check_numerics` can be applied to the output to
detect invertibility problems.
**Note**: with large batch sizes, the computation on the GPU may be slow, if
either `partial_pivoting=True` or there are multiple right-hand sides
(`K > 1`). If this issue arises, consider if it's possible to disable pivoting
and have `K = 1`, or, alternatively, consider using CPU.
On CPU, solution is computed via Gaussian elimination with or without partial
pivoting, depending on `partial_pivoting` parameter. On GPU, Nvidia's cuSPARSE
library is used: https://docs.nvidia.com/cuda/cusparse/index.html#gtsv
Args:
diagonals: A `Tensor` or tuple of `Tensor`s describing left-hand sides. The
shape depends of `diagonals_format`, see description above. Must be
`float32`, `float64`, `complex64`, or `complex128`.
rhs: A `Tensor` of shape [..., M] or [..., M, K] and with the same dtype as
`diagonals`. Note that if the shape of `rhs` and/or `diags` isn't known
statically, `rhs` will be treated as a matrix rather than a vector.
diagonals_format: one of `matrix`, `sequence`, or `compact`. Default is
`compact`.
transpose_rhs: If `True`, `rhs` is transposed before solving (has no effect
if the shape of rhs is [..., M]).
conjugate_rhs: If `True`, `rhs` is conjugated before solving.
name: A name to give this `Op` (optional).
partial_pivoting: whether to perform partial pivoting. `True` by default.
Partial pivoting makes the procedure more stable, but slower. Partial
pivoting is unnecessary in some cases, including diagonally dominant and
symmetric positive definite matrices (see e.g. theorem 9.12 in [1]).
perturb_singular: whether to perturb singular matrices to return a finite
result. `False` by default. If true, solutions to systems involving
a singular matrix will be computed by perturbing near-zero pivots in
the partially pivoted LU decomposition. Specifically, tiny pivots are
perturbed by an amount of order `eps * max_{ij} |U(i,j)|` to avoid
overflow. Here `U` is the upper triangular part of the LU decomposition,
and `eps` is the machine precision. This is useful for solving
numerically singular systems when computing eigenvectors by inverse
iteration.
If `partial_pivoting` is `False`, `perturb_singular` must be `False` as
well.
Returns:
A `Tensor` of shape [..., M] or [..., M, K] containing the solutions.
If the input matrix is singular, the result is undefined.
Raises:
ValueError: Is raised if any of the following conditions hold:
1. An unsupported type is provided as input,
2. the input tensors have incorrect shapes,
3. `perturb_singular` is `True` but `partial_pivoting` is not.
UnimplementedError: Whenever `partial_pivoting` is true and the backend is
XLA, or whenever `perturb_singular` is true and the backend is
XLA or GPU.
[1] Nicholas J. Higham (2002). Accuracy and Stability of Numerical Algorithms:
Second Edition. SIAM. p. 175. ISBN 978-0-89871-802-7.
"""
if perturb_singular and not partial_pivoting:
raise ValueError('partial_pivoting must be True if perturb_singular is.')
if diagonals_format == 'compact':
return _tridiagonal_solve_compact_format(diagonals, rhs, transpose_rhs,
conjugate_rhs, partial_pivoting,
perturb_singular, name)
if diagonals_format == 'sequence':
if not isinstance(diagonals, (tuple, list)) or len(diagonals) != 3:
raise ValueError('Expected diagonals to be a sequence of length 3.')
superdiag, maindiag, subdiag = diagonals
if (not subdiag.shape[:-1].is_compatible_with(maindiag.shape[:-1]) or
not superdiag.shape[:-1].is_compatible_with(maindiag.shape[:-1])):
raise ValueError(
'Tensors representing the three diagonals must have the same shape,'
'except for the last dimension, got {}, {}, {}'.format(
subdiag.shape, maindiag.shape, superdiag.shape))
m = tensor_shape.dimension_value(maindiag.shape[-1])
def pad_if_necessary(t, name, last_dim_padding):
n = tensor_shape.dimension_value(t.shape[-1])
if not n or n == m:
return t
if n == m - 1:
paddings = ([[0, 0] for _ in range(len(t.shape) - 1)] +
[last_dim_padding])
return array_ops.pad(t, paddings)
raise ValueError('Expected {} to be have length {} or {}, got {}.'.format(
name, m, m - 1, n))
subdiag = pad_if_necessary(subdiag, 'subdiagonal', [1, 0])
superdiag = pad_if_necessary(superdiag, 'superdiagonal', [0, 1])
diagonals = array_ops_stack.stack((superdiag, maindiag, subdiag), axis=-2)
return _tridiagonal_solve_compact_format(diagonals, rhs, transpose_rhs,
conjugate_rhs, partial_pivoting,
perturb_singular, name)
if diagonals_format == 'matrix':
m1 = tensor_shape.dimension_value(diagonals.shape[-1])
m2 = tensor_shape.dimension_value(diagonals.shape[-2])
if m1 and m2 and m1 != m2:
raise ValueError(
'Expected last two dimensions of diagonals to be same, got {} and {}'
.format(m1, m2))
m = m1 or m2
diagonals = array_ops.matrix_diag_part(
diagonals, k=(-1, 1), padding_value=0., align='LEFT_RIGHT')
return _tridiagonal_solve_compact_format(diagonals, rhs, transpose_rhs,
conjugate_rhs, partial_pivoting,
perturb_singular, name)
raise ValueError('Unrecognized diagonals_format: {}'.format(diagonals_format))
def _tridiagonal_solve_compact_format(diagonals, rhs, transpose_rhs,
conjugate_rhs, partial_pivoting,
perturb_singular, name):
"""Helper function used after the input has been cast to compact form."""
diags_rank, rhs_rank = diagonals.shape.rank, rhs.shape.rank
# If we know the rank of the diagonal tensor, do some static checking.
if diags_rank:
if diags_rank < 2:
raise ValueError(
'Expected diagonals to have rank at least 2, got {}'.format(
diags_rank))
if rhs_rank and rhs_rank != diags_rank and rhs_rank != diags_rank - 1:
raise ValueError('Expected the rank of rhs to be {} or {}, got {}'.format(
diags_rank - 1, diags_rank, rhs_rank))
if (rhs_rank and not diagonals.shape[:-2].is_compatible_with(
rhs.shape[:diags_rank - 2])):
raise ValueError('Batch shapes {} and {} are incompatible'.format(
diagonals.shape[:-2], rhs.shape[:diags_rank - 2]))
if diagonals.shape[-2] and diagonals.shape[-2] != 3:
raise ValueError('Expected 3 diagonals got {}'.format(diagonals.shape[-2]))
def check_num_lhs_matches_num_rhs():
if (diagonals.shape[-1] and rhs.shape[-2] and
diagonals.shape[-1] != rhs.shape[-2]):
raise ValueError('Expected number of left-hand sided and right-hand '
'sides to be equal, got {} and {}'.format(
diagonals.shape[-1], rhs.shape[-2]))
if rhs_rank and diags_rank and rhs_rank == diags_rank - 1:
# Rhs provided as a vector, ignoring transpose_rhs
if conjugate_rhs:
rhs = math_ops.conj(rhs)
rhs = array_ops.expand_dims(rhs, -1)
check_num_lhs_matches_num_rhs()
return array_ops.squeeze(
linalg_ops.tridiagonal_solve(diagonals, rhs, partial_pivoting,
perturb_singular, name), -1)
if transpose_rhs:
rhs = array_ops.matrix_transpose(rhs, conjugate=conjugate_rhs)
elif conjugate_rhs:
rhs = math_ops.conj(rhs)
check_num_lhs_matches_num_rhs()
return linalg_ops.tridiagonal_solve(diagonals, rhs, partial_pivoting,
perturb_singular, name)
@tf_export('linalg.tridiagonal_matmul')
@dispatch.add_dispatch_support
def tridiagonal_matmul(diagonals, rhs, diagonals_format='compact', name=None):
r"""Multiplies tridiagonal matrix by matrix.
`diagonals` is representation of 3-diagonal NxN matrix, which depends on
`diagonals_format`.
In `matrix` format, `diagonals` must be a tensor of shape `[..., M, M]`, with
two inner-most dimensions representing the square tridiagonal matrices.
Elements outside of the three diagonals will be ignored.
If `sequence` format, `diagonals` is list or tuple of three tensors:
`[superdiag, maindiag, subdiag]`, each having shape [..., M]. Last element
of `superdiag` first element of `subdiag` are ignored.
In `compact` format the three diagonals are brought together into one tensor
of shape `[..., 3, M]`, with last two dimensions containing superdiagonals,
diagonals, and subdiagonals, in order. Similarly to `sequence` format,
elements `diagonals[..., 0, M-1]` and `diagonals[..., 2, 0]` are ignored.
The `sequence` format is recommended as the one with the best performance.
`rhs` is matrix to the right of multiplication. It has shape `[..., M, N]`.
Example:
```python
superdiag = tf.constant([-1, -1, 0], dtype=tf.float64)
maindiag = tf.constant([2, 2, 2], dtype=tf.float64)
subdiag = tf.constant([0, -1, -1], dtype=tf.float64)
diagonals = [superdiag, maindiag, subdiag]
rhs = tf.constant([[1, 1], [1, 1], [1, 1]], dtype=tf.float64)
x = tf.linalg.tridiagonal_matmul(diagonals, rhs, diagonals_format='sequence')
```
Args:
diagonals: A `Tensor` or tuple of `Tensor`s describing left-hand sides. The
shape depends of `diagonals_format`, see description above. Must be
`float32`, `float64`, `complex64`, or `complex128`.
rhs: A `Tensor` of shape [..., M, N] and with the same dtype as `diagonals`.
diagonals_format: one of `sequence`, or `compact`. Default is `compact`.
name: A name to give this `Op` (optional).
Returns:
A `Tensor` of shape [..., M, N] containing the result of multiplication.
Raises:
ValueError: An unsupported type is provided as input, or when the input
tensors have incorrect shapes.
"""
if diagonals_format == 'compact':
superdiag = diagonals[..., 0, :]
maindiag = diagonals[..., 1, :]
subdiag = diagonals[..., 2, :]
elif diagonals_format == 'sequence':
superdiag, maindiag, subdiag = diagonals
elif diagonals_format == 'matrix':
m1 = tensor_shape.dimension_value(diagonals.shape[-1])
m2 = tensor_shape.dimension_value(diagonals.shape[-2])
if m1 and m2 and m1 != m2:
raise ValueError(
'Expected last two dimensions of diagonals to be same, got {} and {}'
.format(m1, m2))
diags = array_ops.matrix_diag_part(
diagonals, k=(-1, 1), padding_value=0., align='LEFT_RIGHT')
superdiag = diags[..., 0, :]
maindiag = diags[..., 1, :]
subdiag = diags[..., 2, :]
else:
raise ValueError('Unrecognized diagonals_format: %s' % diagonals_format)
# C++ backend requires matrices.
# Converting 1-dimensional vectors to matrices with 1 row.
superdiag = array_ops.expand_dims(superdiag, -2)
maindiag = array_ops.expand_dims(maindiag, -2)
subdiag = array_ops.expand_dims(subdiag, -2)
return linalg_ops.tridiagonal_mat_mul(superdiag, maindiag, subdiag, rhs, name)
def _maybe_validate_matrix(a, validate_args):
"""Checks that input is a `float` matrix."""
assertions = []
if not a.dtype.is_floating:
raise TypeError('Input `a` must have `float`-like `dtype` '
'(saw {}).'.format(a.dtype.name))
if a.shape is not None and a.shape.rank is not None:
if a.shape.rank < 2:
raise ValueError('Input `a` must have at least 2 dimensions '
'(saw: {}).'.format(a.shape.rank))
elif validate_args:
assertions.append(
check_ops.assert_rank_at_least(
a, rank=2, message='Input `a` must have at least 2 dimensions.'))
return assertions
@tf_export('linalg.matrix_rank')
@dispatch.add_dispatch_support
def matrix_rank(a, tol=None, validate_args=False, name=None):
"""Compute the matrix rank of one or more matrices.
Args:
a: (Batch of) `float`-like matrix-shaped `Tensor`(s) which are to be
pseudo-inverted.
tol: Threshold below which the singular value is counted as 'zero'.
Default value: `None` (i.e., `eps * max(rows, cols) * max(singular_val)`).
validate_args: When `True`, additional assertions might be embedded in the
graph.
Default value: `False` (i.e., no graph assertions are added).
name: Python `str` prefixed to ops created by this function.
Default value: 'matrix_rank'.
Returns:
matrix_rank: (Batch of) `int32` scalars representing the number of non-zero
singular values.
"""
with ops.name_scope(name or 'matrix_rank'):
a = ops.convert_to_tensor(a, dtype_hint=dtypes.float32, name='a')
assertions = _maybe_validate_matrix(a, validate_args)
if assertions:
with ops.control_dependencies(assertions):
a = array_ops.identity(a)
s = svd(a, compute_uv=False)
if tol is None:
if (a.shape[-2:]).is_fully_defined():
m = np.max(a.shape[-2:].as_list())
else:
m = math_ops.reduce_max(array_ops.shape(a)[-2:])
eps = np.finfo(a.dtype.as_numpy_dtype).eps
tol = (
eps * math_ops.cast(m, a.dtype) *
math_ops.reduce_max(s, axis=-1, keepdims=True))
return math_ops.reduce_sum(math_ops.cast(s > tol, dtypes.int32), axis=-1)
@tf_export('linalg.pinv')
@dispatch.add_dispatch_support
def pinv(a, rcond=None, validate_args=False, name=None):
"""Compute the Moore-Penrose pseudo-inverse of one or more matrices.
Calculate the [generalized inverse of a matrix](
https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse) using its
singular-value decomposition (SVD) and including all large singular values.
The pseudo-inverse of a matrix `A`, is defined as: 'the matrix that 'solves'
[the least-squares problem] `A @ x = b`,' i.e., if `x_hat` is a solution, then
`A_pinv` is the matrix such that `x_hat = A_pinv @ b`. It can be shown that if
`U @ Sigma @ V.T = A` is the singular value decomposition of `A`, then
`A_pinv = V @ inv(Sigma) U^T`. [(Strang, 1980)][1]
This function is analogous to [`numpy.linalg.pinv`](
https://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.pinv.html).
It differs only in default value of `rcond`. In `numpy.linalg.pinv`, the
default `rcond` is `1e-15`. Here the default is
`10. * max(num_rows, num_cols) * np.finfo(dtype).eps`.
Args:
a: (Batch of) `float`-like matrix-shaped `Tensor`(s) which are to be
pseudo-inverted.
rcond: `Tensor` of small singular value cutoffs. Singular values smaller
(in modulus) than `rcond` * largest_singular_value (again, in modulus) are
set to zero. Must broadcast against `tf.shape(a)[:-2]`.
Default value: `10. * max(num_rows, num_cols) * np.finfo(a.dtype).eps`.
validate_args: When `True`, additional assertions might be embedded in the
graph.
Default value: `False` (i.e., no graph assertions are added).
name: Python `str` prefixed to ops created by this function.
Default value: 'pinv'.
Returns:
a_pinv: (Batch of) pseudo-inverse of input `a`. Has same shape as `a` except
rightmost two dimensions are transposed.
Raises:
TypeError: if input `a` does not have `float`-like `dtype`.
ValueError: if input `a` has fewer than 2 dimensions.
#### Examples
```python
import tensorflow as tf
import tensorflow_probability as tfp
a = tf.constant([[1., 0.4, 0.5],
[0.4, 0.2, 0.25],
[0.5, 0.25, 0.35]])
tf.matmul(tf.linalg.pinv(a), a)
# ==> array([[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]], dtype=float32)
a = tf.constant([[1., 0.4, 0.5, 1.],
[0.4, 0.2, 0.25, 2.],
[0.5, 0.25, 0.35, 3.]])
tf.matmul(tf.linalg.pinv(a), a)
# ==> array([[ 0.76, 0.37, 0.21, -0.02],
[ 0.37, 0.43, -0.33, 0.02],
[ 0.21, -0.33, 0.81, 0.01],
[-0.02, 0.02, 0.01, 1. ]], dtype=float32)
```
#### References
[1]: G. Strang. 'Linear Algebra and Its Applications, 2nd Ed.' Academic Press,
Inc., 1980, pp. 139-142.
"""
with ops.name_scope(name or 'pinv'):
a = ops.convert_to_tensor(a, name='a')
assertions = _maybe_validate_matrix(a, validate_args)
if assertions:
with ops.control_dependencies(assertions):
a = array_ops.identity(a)
dtype = a.dtype.as_numpy_dtype
if rcond is None:
def get_dim_size(dim):
dim_val = tensor_shape.dimension_value(a.shape[dim])
if dim_val is not None:
return dim_val
return array_ops.shape(a)[dim]
num_rows = get_dim_size(-2)
num_cols = get_dim_size(-1)
if isinstance(num_rows, int) and isinstance(num_cols, int):
max_rows_cols = float(max(num_rows, num_cols))
else:
max_rows_cols = math_ops.cast(
math_ops.maximum(num_rows, num_cols), dtype)
rcond = 10. * max_rows_cols * np.finfo(dtype).eps
rcond = ops.convert_to_tensor(rcond, dtype=dtype, name='rcond')
# Calculate pseudo inverse via SVD.
# Note: if a is Hermitian then u == v. (We might observe additional
# performance by explicitly setting `v = u` in such cases.)
[
singular_values, # Sigma
left_singular_vectors, # U
right_singular_vectors, # V
] = svd(
a, full_matrices=False, compute_uv=True)
# Saturate small singular values to inf. This has the effect of make
# `1. / s = 0.` while not resulting in `NaN` gradients.
cutoff = rcond * math_ops.reduce_max(singular_values, axis=-1)
singular_values = array_ops.where_v2(
singular_values > array_ops.expand_dims_v2(cutoff, -1), singular_values,
np.array(np.inf, dtype))
# By the definition of the SVD, `a == u @ s @ v^H`, and the pseudo-inverse
# is defined as `pinv(a) == v @ inv(s) @ u^H`.
a_pinv = math_ops.matmul(
right_singular_vectors / array_ops.expand_dims_v2(singular_values, -2),
left_singular_vectors,
adjoint_b=True)
if a.shape is not None and a.shape.rank is not None:
a_pinv.set_shape(a.shape[:-2].concatenate([a.shape[-1], a.shape[-2]]))
return a_pinv
@tf_export('linalg.lu_solve')
@dispatch.add_dispatch_support
def lu_solve(lower_upper, perm, rhs, validate_args=False, name=None):
"""Solves systems of linear eqns `A X = RHS`, given LU factorizations.
Note: this function does not verify the implied matrix is actually invertible
nor is this condition checked even when `validate_args=True`.
Args:
lower_upper: `lu` as returned by `tf.linalg.lu`, i.e., if `matmul(P,
matmul(L, U)) = X` then `lower_upper = L + U - eye`.
perm: `p` as returned by `tf.linag.lu`, i.e., if `matmul(P, matmul(L, U)) =
X` then `perm = argmax(P)`.
rhs: Matrix-shaped float `Tensor` representing targets for which to solve;
`A X = RHS`. To handle vector cases, use: `lu_solve(..., rhs[...,
tf.newaxis])[..., 0]`.
validate_args: Python `bool` indicating whether arguments should be checked
for correctness. Note: this function does not verify the implied matrix is
actually invertible, even when `validate_args=True`.
Default value: `False` (i.e., don't validate arguments).
name: Python `str` name given to ops managed by this object.
Default value: `None` (i.e., 'lu_solve').
Returns:
x: The `X` in `A @ X = RHS`.
#### Examples
```python
import numpy as np
import tensorflow as tf
import tensorflow_probability as tfp
x = [[[1., 2],
[3, 4]],
[[7, 8],
[3, 4]]]
inv_x = tf.linalg.lu_solve(*tf.linalg.lu(x), rhs=tf.eye(2))
tf.assert_near(tf.matrix_inverse(x), inv_x)
# ==> True
```
"""
with ops.name_scope(name or 'lu_solve'):
lower_upper = ops.convert_to_tensor(
lower_upper, dtype_hint=dtypes.float32, name='lower_upper')
perm = ops.convert_to_tensor(perm, dtype_hint=dtypes.int32, name='perm')
rhs = ops.convert_to_tensor(rhs, dtype_hint=lower_upper.dtype, name='rhs')
assertions = _lu_solve_assertions(lower_upper, perm, rhs, validate_args)
if assertions:
with ops.control_dependencies(assertions):
lower_upper = array_ops.identity(lower_upper)
perm = array_ops.identity(perm)
rhs = array_ops.identity(rhs)
if (rhs.shape.rank == 2 and perm.shape.rank == 1):
# Both rhs and perm have scalar batch_shape.
permuted_rhs = array_ops.gather(rhs, perm, axis=-2)
else:
# Either rhs or perm have non-scalar batch_shape or we can't determine
# this information statically.
rhs_shape = array_ops.shape(rhs)