-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsparse_ops_test.py
309 lines (263 loc) · 12.7 KB
/
sparse_ops_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for sparse ops."""
from absl.testing import parameterized
import numpy as np
from tensorflow.python.eager import context
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import errors
from tensorflow.python.framework import ops
from tensorflow.python.framework import sparse_tensor
from tensorflow.python.framework import test_util
# Need array_grad to register gradient for Identity.
from tensorflow.python.ops import array_grad # pylint: disable=unused-import
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import gen_sparse_ops
from tensorflow.python.ops import gradient_checker_v2 as gradient_checker
from tensorflow.python.ops import math_ops
# Need sparse_grad to register gradient for SparseToDense.
from tensorflow.python.ops import sparse_grad # pylint: disable=unused-import
from tensorflow.python.ops import sparse_ops
from tensorflow.python.platform import googletest
@test_util.run_all_in_graph_and_eager_modes
class SparseOpsTest(test_util.TensorFlowTestCase, parameterized.TestCase):
def testSparseEye(self):
def test_one(n, m, as_tensors):
expected = np.eye(n, m)
if as_tensors:
m = constant_op.constant(m)
n = constant_op.constant(n)
s = sparse_ops.sparse_eye(n, m)
d = sparse_ops.sparse_to_dense(s.indices, s.dense_shape, s.values)
self.assertAllEqual(self.evaluate(d), expected)
for n in range(2, 10, 2):
for m in range(2, 10, 2):
# Test with n and m as both constants and tensors.
test_one(n, m, True)
test_one(n, m, False)
def testDenseFromConstantToSparse(self):
expected_constant = np.reshape(np.arange(24, dtype=np.int64), (3, 4, 2))
tensor = constant_op.constant(expected_constant)
sparse = sparse_ops.from_dense(tensor)
dense = sparse_ops.sparse_to_dense(sparse.indices, sparse.dense_shape,
sparse.values)
constant = self.evaluate(dense)
self.assertAllEqual(expected_constant, constant)
def testTransposePreservesShape(self):
with ops.Graph().as_default():
t = sparse_tensor.SparseTensor(indices=[[0, 0]],
values=[0.],
dense_shape=[3, 4])
self.assertTrue(t.shape.is_fully_defined)
transposed = sparse_ops.sparse_transpose(t)
self.assertAllEqual(transposed.shape, [4, 3])
def testSparseExpandDims(self):
for rank in range(1, 4):
# Create a dummy input. When rank=3, shape=[2, 4, 6].
shape = np.arange(1, rank + 1) * 2
before = np.arange(np.prod(shape)).reshape(shape)
# Make entries sparse.
before *= np.random.binomial(1, .2, before.shape)
dense_shape = before.shape
indices = np.array(np.where(before)).T
values = before[before != 0]
# Try every possible valid value of axis.
for axis in range(-rank - 1, rank):
expected_after = np.expand_dims(before, axis)
for axis_as_tensor in [False, True]:
dense_shape_t = constant_op.constant(dense_shape, dtype=dtypes.int64)
indices_t = constant_op.constant(indices)
values_t = constant_op.constant(values)
before_t = sparse_tensor.SparseTensor(
indices=indices_t, values=values_t, dense_shape=dense_shape_t)
if axis_as_tensor:
axis = constant_op.constant(axis)
s = sparse_ops.sparse_expand_dims(before_t, axis)
d = sparse_ops.sparse_to_dense(s.indices, s.dense_shape, s.values)
self.assertAllEqual(self.evaluate(d), expected_after)
@parameterized.parameters([
(math_ops.abs, [1.0, -1.0, 3.0, -4.0], [1.0, 1.0, 3.0, 4.0]),
(math_ops.negative, [1.0, -1.0, 3.0, -4.0], [-1.0, 1.0, -3.0, 4.0]),
(math_ops.sign, [3.0, -2.0, 0.0, -4.0], [1.0, -1.0, 0.0, -1.0]),
(math_ops.square, [1.0, -1.0, 3.0, -4.0], [1.0, 1.0, 9.0, 16.0]),
])
def testUnarySparseDispatch(self, op, values, expected):
st = sparse_tensor.SparseTensor(
indices=[[0, 0], [0, 1], [2, 0], [2, 4]],
values=values,
dense_shape=[3, 6])
result = op(st)
result_value = self.evaluate(result)
self.assertAllEqual(result_value.indices, st.indices)
self.assertAllEqual(result_value.values, expected)
self.assertAllEqual(result_value.dense_shape, st.dense_shape)
def testSparseToDenseGradient(self):
def f(sparse_values, default_value):
st = sparse_tensor.SparseTensor(
indices=[[0, 3, 6], [1, 4, 7], [2, 5, 8]],
values=sparse_values,
dense_shape=[3, 6, 9])
return sparse_ops.sparse_tensor_to_dense(st, default_value)
grads = gradient_checker.compute_gradient(
f, [constant_op.constant([1.0, 2.0, 3.0]),
constant_op.constant(0.0)])
epsilon = 1e-4
self.assertLess(gradient_checker.max_error(*grads), epsilon)
def testSparseTensorToDenseString(self):
sp = sparse_tensor.SparseTensor(
indices=[[0, 0], [1, 2]], values=['a', 'b'], dense_shape=[2, 3])
dense = sparse_ops.sparse_tensor_to_dense(sp)
expected_dense = [[b'a', b'', b''], [b'', b'', b'b']]
result_dense = self.evaluate(dense)
self.assertAllEqual(expected_dense, result_dense)
def testDenseSparseTensorMatMul(self):
np.random.seed(42)
dense_numpy_array = np.random.rand(3, 3)
independent_dense_tf = constant_op.constant(
dense_numpy_array, dtype='float32')
sp = sparse_tensor.SparseTensor(
indices=[[0, 0], [1, 2]], values=[4., 8.], dense_shape=[3, 3])
dense_of_sparse = sparse_ops.sparse_to_dense(sp.indices, sp.shape,
sp.values)
result = sparse_ops.sparse_tensor_dense_matmul(
independent_dense_tf, sp, adjoint_a=False, adjoint_b=False)
expected = math_ops.matmul(independent_dense_tf, dense_of_sparse)
self.assertAllEqual(expected, result)
result = sparse_ops.sparse_tensor_dense_matmul(
independent_dense_tf, sp, adjoint_a=False, adjoint_b=True)
expected = math_ops.matmul(independent_dense_tf,
array_ops.transpose(dense_of_sparse))
self.assertAllEqual(expected, result)
result = sparse_ops.sparse_tensor_dense_matmul(
independent_dense_tf, sp, adjoint_a=True, adjoint_b=False)
expected = math_ops.matmul(
array_ops.transpose(independent_dense_tf), dense_of_sparse)
self.assertAllEqual(expected, result)
result = sparse_ops.sparse_tensor_dense_matmul(
independent_dense_tf, sp, adjoint_a=True, adjoint_b=True)
expected = math_ops.matmul(
array_ops.transpose(independent_dense_tf),
array_ops.transpose(dense_of_sparse))
self.assertAllEqual(expected, result)
def testMapValues(self):
# supplying no sparse tensor should result in ValueError
with self.assertRaises(ValueError):
sparse_ops.map_values(math_ops.abs, 0.0)
sp = sparse_ops.from_dense([[0.0, 1.0, 0.0], [-2.0, 1.0, 0.0]])
# helper function to check equality of sparse tensor
def assert_sparse_equal(expected, result):
self.assertAllEqual(expected.values, result.values, msg='Values differ')
self.assertAllEqual(
expected.indices, result.indices, msg='Indices differ')
self.assertAllEqual(
expected.dense_shape, result.dense_shape, msg='Shapes differ')
# check for a single sparse argument
expected = sparse_ops.from_dense([[0.0, 1.0, 0.0], [2.0, 1.0, 0.0]])
result = sparse_ops.map_values(math_ops.abs, sp)
assert_sparse_equal(expected, result)
# check correct passing of keyword argument, and handling of two sparse
# arguments at the same time
def mapping(arg1, arg2, kwarg):
self.assertEqual(kwarg, 'kwarg')
return arg1 + arg2
result = sparse_ops.map_values(mapping, sp, sp, kwarg='kwarg')
expected = sparse_ops.from_dense([[0.0, 2.0, 0.0], [-4.0, 2.0, 0.0]])
assert_sparse_equal(expected, result)
# check that index mismatches are correctly detected even if the `value`s
# have compatible shape
sp_incomp = sparse_ops.from_dense([[0.0, 1.0, 0.0], [-2.0, 0.0, 1.0]])
with self.assertRaises((errors.InvalidArgumentError, ValueError)):
result = sparse_ops.map_values(mapping, sp, sp_incomp, kwarg='kwarg')
self.evaluate(result)
# check that shape mismatches are correctly detected
sp_incomp = sparse_tensor.SparseTensor(sp.indices, sp.values, (25, 25))
with self.assertRaises((errors.InvalidArgumentError, ValueError)):
result = sparse_ops.map_values(mapping, sp, sp_incomp, kwarg='kwarg')
self.evaluate(result)
def testConstantStringToSparse(self):
# Test case for GitHub issue 40633.
tensor = constant_op.constant(list('ababa'))
sparse = sparse_ops.from_dense(tensor)
result = self.evaluate(sparse)
self.assertAllEqual([[0], [1], [2], [3], [4]], result.indices)
self.assertAllEqual([b'a', b'b', b'a', b'b', b'a'], result.values)
self.assertAllEqual([5], result.dense_shape)
def testSparseTensorToDenseQint(self):
x = np.asarray([1, 2])
y = np.asarray([[1, 0, 0], [0, 0, 2]])
for dtype in [dtypes.qint8, dtypes.qint16, dtypes.quint8, dtypes.quint16]:
sp = sparse_tensor.SparseTensor(
indices=[[0, 0], [1, 2]],
values=x.astype(dtype.as_numpy_dtype),
dense_shape=[2, 3])
v = self.evaluate(sparse_ops.sparse_tensor_to_dense(sp))
self.assertAllEqual(
y.astype(dtype.as_numpy_dtype), v.astype(dtype.as_numpy_dtype))
@test_util.run_all_in_graph_and_eager_modes
class RawOpsTest(test_util.TensorFlowTestCase, parameterized.TestCase):
def testSparseFillEmptyRowsGrad(self):
reverse_index_map = [2, 1]
grad_values = [0, 1, 2, 3]
d_values, d_default_value = self.evaluate(
gen_sparse_ops.SparseFillEmptyRowsGrad(
reverse_index_map=reverse_index_map, grad_values=grad_values))
self.assertAllEqual([2, 1], d_values)
self.assertEqual(3, d_default_value)
def testSparseFillEmptyRowsGradNegativeIndexMapValue(self):
reverse_index_map = [2, -1]
grad_values = [0, 1, 2, 3]
with self.assertRaisesRegex(
errors.InvalidArgumentError,
r'Elements in reverse index must be in \[0, 4\)'):
self.evaluate(
gen_sparse_ops.SparseFillEmptyRowsGrad(
reverse_index_map=reverse_index_map, grad_values=grad_values))
def testSparseFillEmptyRowsGradLargeIndexMapValue(self):
reverse_index_map = [2, 10]
grad_values = [0, 1, 2, 3]
with self.assertRaisesRegex(
errors.InvalidArgumentError,
r'Elements in reverse index must be in \[0, 4\)'):
self.evaluate(
gen_sparse_ops.SparseFillEmptyRowsGrad(
reverse_index_map=reverse_index_map, grad_values=grad_values))
def testSparseFillEmptyRowsGradMatrix(self):
reverse_index_map = [0, 1]
grad_values = [[0, 1], [2, 3]]
# Note: Eager mode and graph mode throw different errors here. Graph mode
# will fail with a ValueError from the shape checking logic, while Eager
# will fail with an InvalidArgumentError from the kernel itself.
if context.executing_eagerly():
with self.assertRaisesRegex(errors.InvalidArgumentError,
r'grad_values must be a vector'):
self.evaluate(
gen_sparse_ops.SparseFillEmptyRowsGrad(
reverse_index_map=reverse_index_map, grad_values=grad_values))
else:
with self.assertRaisesRegex(ValueError,
r'Shape must be rank 1 but is rank 2'):
self.evaluate(
gen_sparse_ops.SparseFillEmptyRowsGrad(
reverse_index_map=reverse_index_map, grad_values=grad_values))
def testSparseConcatStaticShape(self):
if context.executing_eagerly():
self.skipTest('sparse_spaceholder is only available in graph context.')
input_a = array_ops.sparse_placeholder(dtypes.float32, shape=(2, 1))
input_b = array_ops.sparse_placeholder(dtypes.float32, shape=(2, 2))
result = sparse_ops.sparse_concat_v2(axis=1, sp_inputs=[input_a, input_b])
self.assertEqual(result.shape, [2, 3])
if __name__ == '__main__':
googletest.main()