-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathstring_ops.py
652 lines (529 loc) · 24.2 KB
/
string_ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
# -*- coding: utf-8 -*-
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Operations for working with string Tensors."""
import numpy as np
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.framework import sparse_tensor
from tensorflow.python.framework import tensor_util
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import gen_parsing_ops
from tensorflow.python.ops import gen_string_ops
from tensorflow.python.ops import math_ops
# go/tf-wildcard-import
# pylint: disable=wildcard-import
# pylint: disable=g-bad-import-order
from tensorflow.python.ops.gen_string_ops import *
from tensorflow.python.util import compat as util_compat
from tensorflow.python.util import deprecation
from tensorflow.python.util import dispatch
from tensorflow.python.util.tf_export import tf_export
# pylint: enable=g-bad-import-order
# pylint: enable=wildcard-import
# pylint: disable=redefined-builtin
@tf_export("strings.regex_full_match")
@dispatch.register_unary_elementwise_api
@dispatch.add_dispatch_support
def regex_full_match(input, pattern, name=None):
r"""Match elements of `input` with regex `pattern`.
Args:
input: string `Tensor`, the source strings to process.
pattern: string or scalar string `Tensor`, regular expression to use,
see more details at https://github.com/google/re2/wiki/Syntax
name: Name of the op.
Returns:
bool `Tensor` of the same shape as `input` with match results.
"""
if isinstance(pattern, util_compat.bytes_or_text_types):
# When `pattern` is static through the life of the op we can
# use a version which performs the expensive regex compilation once at
# creation time.
return gen_string_ops.static_regex_full_match(
input=input, pattern=pattern, name=name)
return gen_string_ops.regex_full_match(
input=input, pattern=pattern, name=name)
regex_full_match.__doc__ = gen_string_ops.regex_full_match.__doc__
@tf_export(
"strings.regex_replace", v1=["strings.regex_replace", "regex_replace"])
@dispatch.register_unary_elementwise_api
@dispatch.add_dispatch_support
@deprecation.deprecated_endpoints("regex_replace")
def regex_replace(input, pattern, rewrite, replace_global=True, name=None):
r"""Replace elements of `input` matching regex `pattern` with `rewrite`.
>>> tf.strings.regex_replace("Text with tags.<br /><b>contains html</b>",
... "<[^>]+>", " ")
<tf.Tensor: shape=(), dtype=string, numpy=b'Text with tags. contains html '>
Args:
input: string `Tensor`, the source strings to process.
pattern: string or scalar string `Tensor`, regular expression to use,
see more details at https://github.com/google/re2/wiki/Syntax
rewrite: string or scalar string `Tensor`, value to use in match
replacement, supports backslash-escaped digits (\1 to \9) can be to insert
text matching corresponding parenthesized group.
replace_global: `bool`, if `True` replace all non-overlapping matches,
else replace only the first match.
name: A name for the operation (optional).
Returns:
string `Tensor` of the same shape as `input` with specified replacements.
"""
if (isinstance(pattern, util_compat.bytes_or_text_types) and
isinstance(rewrite, util_compat.bytes_or_text_types)):
# When `pattern` and `rewrite` are static through the life of the op we can
# use a version which performs the expensive regex compilation once at
# creation time.
return gen_string_ops.static_regex_replace(
input=input, pattern=pattern,
rewrite=rewrite, replace_global=replace_global,
name=name)
return gen_string_ops.regex_replace(
input=input, pattern=pattern,
rewrite=rewrite, replace_global=replace_global,
name=name)
@tf_export("strings.format")
@dispatch.add_dispatch_support
def string_format(template, inputs, placeholder="{}", summarize=3, name=None):
r"""Formats a string template using a list of tensors.
Formats a string template using a list of tensors, abbreviating tensors by
only printing the first and last `summarize` elements of each dimension
(recursively). If formatting only one tensor into a template, the tensor does
not have to be wrapped in a list.
Example:
Formatting a single-tensor template:
>>> tensor = tf.range(5)
>>> tf.strings.format("tensor: {}, suffix", tensor)
<tf.Tensor: shape=(), dtype=string, numpy=b'tensor: [0 1 2 3 4], suffix'>
Formatting a multi-tensor template:
>>> tensor_a = tf.range(2)
>>> tensor_b = tf.range(1, 4, 2)
>>> tf.strings.format("a: {}, b: {}, suffix", (tensor_a, tensor_b))
<tf.Tensor: shape=(), dtype=string, numpy=b'a: [0 1], b: [1 3], suffix'>
Args:
template: A string template to format tensor values into.
inputs: A list of `Tensor` objects, or a single Tensor.
The list of tensors to format into the template string. If a solitary
tensor is passed in, the input tensor will automatically be wrapped as a
list.
placeholder: An optional `string`. Defaults to `{}`.
At each placeholder occurring in the template, a subsequent tensor
will be inserted.
summarize: An optional `int`. Defaults to `3`.
When formatting the tensors, show the first and last `summarize`
entries of each tensor dimension (recursively). If set to -1, all
elements of the tensor will be shown.
name: A name for the operation (optional).
Returns:
A scalar `Tensor` of type `string`.
Raises:
ValueError: if the number of placeholders does not match the number of
inputs.
"""
# If there is only one tensor to format, we will automatically wrap it in a
# list to simplify the user experience
if tensor_util.is_tf_type(inputs):
inputs = [inputs]
if template.count(placeholder) != len(inputs):
raise ValueError(f"The template expects {template.count(placeholder)} "
f"tensors, but the inputs only has {len(inputs)}. "
"Please ensure the number of placeholders in template "
"matches inputs length.")
return gen_string_ops.string_format(inputs,
template=template,
placeholder=placeholder,
summarize=summarize,
name=name)
# Note: tf.strings.split is exported in ragged/ragged_string_ops.py, which
# defines a wrapper for this function.
def string_split(source, sep=None, skip_empty=True, delimiter=None): # pylint: disable=invalid-name
"""Split elements of `source` based on `delimiter` into a `SparseTensor`.
Let N be the size of source (typically N will be the batch size). Split each
element of `source` based on `delimiter` and return a `SparseTensor`
containing the split tokens. Empty tokens are ignored.
If `sep` is an empty string, each element of the `source` is split
into individual strings, each containing one byte. (This includes splitting
multibyte sequences of UTF-8.) If delimiter contains multiple bytes, it is
treated as a set of delimiters with each considered a potential split point.
For example:
N = 2, source[0] is 'hello world' and source[1] is 'a b c', then the output
will be
st.indices = [0, 0;
0, 1;
1, 0;
1, 1;
1, 2]
st.shape = [2, 3]
st.values = ['hello', 'world', 'a', 'b', 'c']
Args:
source: `1-D` string `Tensor`, the strings to split.
sep: `0-D` string `Tensor`, the delimiter character, the string should
be length 0 or 1. Default is ' '.
skip_empty: A `bool`. If `True`, skip the empty strings from the result.
delimiter: deprecated alias for `sep`.
Raises:
ValueError: If delimiter is not a string.
Returns:
A `SparseTensor` of rank `2`, the strings split according to the delimiter.
The first column of the indices corresponds to the row in `source` and the
second column corresponds to the index of the split component in this row.
"""
delimiter = deprecation.deprecated_argument_lookup(
"sep", sep, "delimiter", delimiter)
if delimiter is None:
delimiter = " "
delimiter = ops.convert_to_tensor(delimiter, dtype=dtypes.string)
source = ops.convert_to_tensor(source, dtype=dtypes.string)
indices, values, shape = gen_string_ops.string_split(
source, delimiter=delimiter, skip_empty=skip_empty)
indices.set_shape([None, 2])
values.set_shape([None])
shape.set_shape([2])
return sparse_tensor.SparseTensor(indices, values, shape)
# Note: tf.strings.split is exported in ragged/ragged_string_ops.py, which
# defines a wrapper for this function.
def string_split_v2(source, sep=None, maxsplit=-1):
"""Split elements of `source` based on `sep` into a `SparseTensor`.
Let N be the size of source (typically N will be the batch size). Split each
element of `source` based on `sep` and return a `SparseTensor`
containing the split tokens. Empty tokens are ignored.
For example, N = 2, source[0] is 'hello world' and source[1] is 'a b c',
then the output will be
st.indices = [0, 0;
0, 1;
1, 0;
1, 1;
1, 2]
st.shape = [2, 3]
st.values = ['hello', 'world', 'a', 'b', 'c']
If `sep` is given, consecutive delimiters are not grouped together and are
deemed to delimit empty strings. For example, source of `"1<>2<><>3"` and
sep of `"<>"` returns `["1", "2", "", "3"]`. If `sep` is None or an empty
string, consecutive whitespace are regarded as a single separator, and the
result will contain no empty strings at the start or end if the string has
leading or trailing whitespace.
Note that the above mentioned behavior matches python's str.split.
Args:
source: `1-D` string `Tensor`, the strings to split.
sep: `0-D` string `Tensor`, the delimiter character.
maxsplit: An `int`. If `maxsplit > 0`, limit of the split of the result.
Raises:
ValueError: If sep is not a string.
Returns:
A `SparseTensor` of rank `2`, the strings split according to the delimiter.
The first column of the indices corresponds to the row in `source` and the
second column corresponds to the index of the split component in this row.
"""
if sep is None:
sep = ""
sep = ops.convert_to_tensor(sep, dtype=dtypes.string)
source = ops.convert_to_tensor(source, dtype=dtypes.string)
indices, values, shape = gen_string_ops.string_split_v2(
source, sep=sep, maxsplit=maxsplit)
indices.set_shape([None, 2])
values.set_shape([None])
shape.set_shape([2])
return sparse_tensor.SparseTensor(indices, values, shape)
def _reduce_join_reduction_dims(x, axis):
"""Returns range(rank(x) - 1, 0, -1) if axis is None; or axis otherwise."""
if axis is not None:
return axis
else:
# Fast path: avoid creating Rank and Range ops if ndims is known.
if x.get_shape().ndims is not None:
return constant_op.constant(
np.arange(x.get_shape().ndims - 1, -1, -1), dtype=dtypes.int32)
# Otherwise, we rely on Range and Rank to do the right thing at run-time.
return math_ops.range(array_ops.rank(x) - 1, -1, -1)
@tf_export(v1=["strings.reduce_join", "reduce_join"])
@dispatch.add_dispatch_support
@deprecation.deprecated_args(None,
"keep_dims is deprecated, use keepdims instead",
"keep_dims")
@deprecation.deprecated_endpoints("reduce_join")
def reduce_join(inputs, axis=None, # pylint: disable=missing-docstring
keep_dims=None,
separator="",
name=None,
reduction_indices=None,
keepdims=None):
keepdims = deprecation.deprecated_argument_lookup("keepdims", keepdims,
"keep_dims", keep_dims)
if keep_dims is None:
keep_dims = False
axis = deprecation.deprecated_argument_lookup("axis", axis,
"reduction_indices",
reduction_indices)
return reduce_join_v2(
inputs=inputs,
axis=axis,
keepdims=keepdims,
separator=separator,
name=name)
@tf_export("strings.reduce_join", v1=[])
@dispatch.add_dispatch_support
def reduce_join_v2( # pylint: disable=missing-docstring
inputs,
axis=None,
keepdims=False,
separator="",
name=None):
"""Joins all strings into a single string, or joins along an axis.
This is the reduction operation for the elementwise `tf.strings.join` op.
>>> tf.strings.reduce_join([['abc','123'],
... ['def','456']]).numpy()
b'abc123def456'
>>> tf.strings.reduce_join([['abc','123'],
... ['def','456']], axis=-1).numpy()
array([b'abc123', b'def456'], dtype=object)
>>> tf.strings.reduce_join([['abc','123'],
... ['def','456']],
... axis=-1,
... separator=" ").numpy()
array([b'abc 123', b'def 456'], dtype=object)
Args:
inputs: A `tf.string` tensor.
axis: Which axis to join along. The default behavior is to join all
elements, producing a scalar.
keepdims: If true, retains reduced dimensions with length 1.
separator: a string added between each string being joined.
name: A name for the operation (optional).
Returns:
A `tf.string` tensor.
"""
with ops.name_scope(None, "ReduceJoin", [inputs, axis]):
inputs_t = ops.convert_to_tensor(inputs)
axis = _reduce_join_reduction_dims(inputs_t, axis)
return gen_string_ops.reduce_join(
inputs=inputs_t,
reduction_indices=axis,
keep_dims=keepdims,
separator=separator,
name=name)
reduce_join.__doc__ = reduce_join_v2.__doc__
# This wrapper provides backwards compatibility for code that predates the
# unit argument and that passed 'name' as a positional argument.
@tf_export(v1=["strings.length"])
@dispatch.register_unary_elementwise_api
@dispatch.add_dispatch_support
def string_length(input, name=None, unit="BYTE"):
"""Computes the length of each string given in the input tensor.
>>> strings = tf.constant(['Hello','TensorFlow', '🙂'])
>>> tf.strings.length(strings).numpy() # default counts bytes
array([ 5, 10, 4], dtype=int32)
>>> tf.strings.length(strings, unit="UTF8_CHAR").numpy()
array([ 5, 10, 1], dtype=int32)
Args:
input: A `Tensor` of type `string`. The strings for which to compute the
length for each element.
name: A name for the operation (optional).
unit: An optional `string` from: `"BYTE", "UTF8_CHAR"`. Defaults to
`"BYTE"`. The unit that is counted to compute string length. One of:
`"BYTE"` (for the number of bytes in each string) or `"UTF8_CHAR"` (for
the number of UTF-8 encoded Unicode code points in each string). Results
are undefined if `unit=UTF8_CHAR` and the `input` strings do not contain
structurally valid UTF-8.
Returns:
A `Tensor` of type `int32`, containing the length of the input string in
the same element of the input tensor.
"""
return gen_string_ops.string_length(input, unit=unit, name=name)
@tf_export("strings.length", v1=[])
@dispatch.register_unary_elementwise_api
@dispatch.add_dispatch_support
def string_length_v2(input, unit="BYTE", name=None):
return gen_string_ops.string_length(input, unit=unit, name=name)
string_length_v2.__doc__ = gen_string_ops.string_length.__doc__
@tf_export(v1=["substr"])
@dispatch.register_unary_elementwise_api
@dispatch.add_dispatch_support
@deprecation.deprecated(None, "Use `tf.strings.substr` instead of `tf.substr`.")
def substr_deprecated(input, pos, len, name=None, unit="BYTE"):
return substr(input, pos, len, name=name, unit=unit)
substr_deprecated.__doc__ = gen_string_ops.substr.__doc__
@tf_export(v1=["strings.substr"])
@dispatch.register_unary_elementwise_api
@dispatch.add_dispatch_support
def substr(input, pos, len, name=None, unit="BYTE"):
return gen_string_ops.substr(input, pos, len, unit=unit, name=name)
substr.__doc__ = gen_string_ops.substr.__doc__
@tf_export("strings.substr", v1=[])
@dispatch.register_unary_elementwise_api
@dispatch.add_dispatch_support
def substr_v2(input, pos, len, unit="BYTE", name=None):
return gen_string_ops.substr(input, pos, len, unit=unit, name=name)
substr_v2.__doc__ = gen_string_ops.substr.__doc__
ops.NotDifferentiable("RegexReplace")
ops.NotDifferentiable("StringToHashBucket")
ops.NotDifferentiable("StringToHashBucketFast")
ops.NotDifferentiable("StringToHashBucketStrong")
ops.NotDifferentiable("ReduceJoin")
ops.NotDifferentiable("StringJoin")
ops.NotDifferentiable("StringSplit")
ops.NotDifferentiable("AsString")
ops.NotDifferentiable("EncodeBase64")
ops.NotDifferentiable("DecodeBase64")
@tf_export("strings.to_number", v1=[])
@dispatch.register_unary_elementwise_api
@dispatch.add_dispatch_support
def string_to_number(input, out_type=dtypes.float32, name=None):
r"""Converts each string in the input Tensor to the specified numeric type.
(Note that int32 overflow results in an error while float overflow
results in a rounded value.)
Examples:
>>> tf.strings.to_number("1.55")
<tf.Tensor: shape=(), dtype=float32, numpy=1.55>
>>> tf.strings.to_number("3", tf.int32)
<tf.Tensor: shape=(), dtype=int32, numpy=3>
Args:
input: A `Tensor` of type `string`.
out_type: An optional `tf.DType` from: `tf.float32, tf.float64, tf.int32,
tf.int64`. Defaults to `tf.float32`.
The numeric type to interpret each string in `string_tensor` as.
name: A name for the operation (optional).
Returns:
A `Tensor` of type `out_type`.
"""
return gen_parsing_ops.string_to_number(input, out_type, name)
@tf_export(v1=["strings.to_number", "string_to_number"])
@dispatch.add_dispatch_support
def string_to_number_v1(
string_tensor=None,
out_type=dtypes.float32,
name=None,
input=None):
string_tensor = deprecation.deprecated_argument_lookup(
"input", input, "string_tensor", string_tensor)
return gen_parsing_ops.string_to_number(string_tensor, out_type, name)
string_to_number_v1.__doc__ = gen_parsing_ops.string_to_number.__doc__
@tf_export("strings.to_hash_bucket", v1=[])
@dispatch.register_unary_elementwise_api
@dispatch.add_dispatch_support
def string_to_hash_bucket(input, num_buckets, name=None):
# pylint: disable=line-too-long
r"""Converts each string in the input Tensor to its hash mod by a number of buckets.
The hash function is deterministic on the content of the string within the
process.
Note that the hash function may change from time to time.
This functionality will be deprecated and it's recommended to use
`tf.strings.to_hash_bucket_fast()` or `tf.strings.to_hash_bucket_strong()`.
Examples:
>>> tf.strings.to_hash_bucket(["Hello", "TensorFlow", "2.x"], 3)
<tf.Tensor: shape=(3,), dtype=int64, numpy=array([2, 0, 1])>
Args:
input: A `Tensor` of type `string`.
num_buckets: An `int` that is `>= 1`. The number of buckets.
name: A name for the operation (optional).
Returns:
A `Tensor` of type `int64`.
"""
# pylint: enable=line-too-long
return gen_string_ops.string_to_hash_bucket(input, num_buckets, name)
@tf_export(v1=["strings.to_hash_bucket", "string_to_hash_bucket"])
@dispatch.register_unary_elementwise_api
@dispatch.add_dispatch_support
def string_to_hash_bucket_v1( # pylint: disable=missing-function-docstring
string_tensor=None,
num_buckets=None,
name=None,
input=None):
string_tensor = deprecation.deprecated_argument_lookup(
"input", input, "string_tensor", string_tensor)
return gen_string_ops.string_to_hash_bucket(string_tensor, num_buckets, name)
string_to_hash_bucket_v1.__doc__ = gen_string_ops.string_to_hash_bucket.__doc__
@tf_export("strings.join", v1=["strings.join", "string_join"])
@dispatch.add_dispatch_support
@deprecation.deprecated_endpoints("string_join")
def string_join(inputs, separator="", name=None):
"""Perform element-wise concatenation of a list of string tensors.
Given a list of string tensors of same shape, performs element-wise
concatenation of the strings of the same index in all tensors.
>>> tf.strings.join(['abc','def']).numpy()
b'abcdef'
>>> tf.strings.join([['abc','123'],
... ['def','456'],
... ['ghi','789']]).numpy()
array([b'abcdefghi', b'123456789'], dtype=object)
>>> tf.strings.join([['abc','123'],
... ['def','456']],
... separator=" ").numpy()
array([b'abc def', b'123 456'], dtype=object)
The reduction version of this elementwise operation is
`tf.strings.reduce_join`
Args:
inputs: A list of `tf.Tensor` objects of same size and `tf.string` dtype.
separator: A string added between each string being joined.
name: A name for the operation (optional).
Returns:
A `tf.string` tensor.
"""
return gen_string_ops.string_join(inputs, separator=separator, name=name)
@tf_export("strings.unsorted_segment_join")
@dispatch.add_dispatch_support
def unsorted_segment_join(inputs,
segment_ids,
num_segments,
separator="",
name=None):
"""Joins the elements of `inputs` based on `segment_ids`.
Computes the string join along segments of a tensor.
Given `segment_ids` with rank `N` and `data` with rank `N+M`:
```
output[i, k1...kM] = strings.join([data[j1...jN, k1...kM])
```
where the join is over all `[j1...jN]` such that `segment_ids[j1...jN] = i`.
Strings are joined in row-major order.
For example:
>>> inputs = ['this', 'a', 'test', 'is']
>>> segment_ids = [0, 1, 1, 0]
>>> num_segments = 2
>>> separator = ' '
>>> tf.strings.unsorted_segment_join(inputs, segment_ids, num_segments,
... separator).numpy()
array([b'this is', b'a test'], dtype=object)
>>> inputs = [['Y', 'q', 'c'], ['Y', '6', '6'], ['p', 'G', 'a']]
>>> segment_ids = [1, 0, 1]
>>> num_segments = 2
>>> tf.strings.unsorted_segment_join(inputs, segment_ids, num_segments,
... separator=':').numpy()
array([[b'Y', b'6', b'6'],
[b'Y:p', b'q:G', b'c:a']], dtype=object)
Args:
inputs: A list of `tf.Tensor` objects of type `tf.string`.
segment_ids: A tensor whose shape is a prefix of `inputs.shape` and whose
type must be `tf.int32` or `tf.int64`. Negative segment ids are not
supported.
num_segments: A scalar of type `tf.int32` or `tf.int64`. Must be
non-negative and larger than any segment id.
separator: The separator to use when joining. Defaults to `""`.
name: A name for the operation (optional).
Returns:
A `tf.string` tensor representing the concatenated values, using the given
separator.
"""
return gen_string_ops.unsorted_segment_join(
inputs, segment_ids, num_segments, separator=separator, name=name)
# Register elementwise ops that don't have Python wrappers.
dispatch.register_unary_elementwise_api(gen_string_ops.as_string)
dispatch.register_unary_elementwise_api(gen_string_ops.decode_base64)
dispatch.register_unary_elementwise_api(gen_string_ops.encode_base64)
dispatch.register_unary_elementwise_api(gen_string_ops.string_lower)
dispatch.register_unary_elementwise_api(gen_string_ops.string_upper)
dispatch.register_unary_elementwise_api(gen_string_ops.unicode_transcode)
dispatch.register_unary_elementwise_api(gen_string_ops.string_strip)
dispatch.register_unary_elementwise_api(
gen_string_ops.string_to_hash_bucket_fast)
dispatch.register_unary_elementwise_api(
gen_string_ops.string_to_hash_bucket_strong)
dispatch.register_unary_elementwise_api(gen_string_ops.unicode_script)