-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathinspect_checkpoint.py
203 lines (180 loc) · 7.33 KB
/
inspect_checkpoint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""A simple script for inspect checkpoint files."""
import argparse
import re
import sys
from absl import app
import numpy as np
from tensorflow.python.framework import errors_impl
from tensorflow.python.platform import flags
from tensorflow.python.training import py_checkpoint_reader
FLAGS = None
def _count_total_params(reader, count_exclude_pattern=""):
"""Count total number of variables."""
var_to_shape_map = reader.get_variable_to_shape_map()
# Filter out tensors that we don't want to count
if count_exclude_pattern:
regex_pattern = re.compile(count_exclude_pattern)
new_var_to_shape_map = {}
exclude_num_tensors = 0
exclude_num_params = 0
for v in var_to_shape_map:
if regex_pattern.search(v):
exclude_num_tensors += 1
exclude_num_params += np.prod(var_to_shape_map[v])
else:
new_var_to_shape_map[v] = var_to_shape_map[v]
var_to_shape_map = new_var_to_shape_map
print("# Excluding %d tensors (%d params) that match %s when counting." % (
exclude_num_tensors, exclude_num_params, count_exclude_pattern))
var_sizes = [np.prod(var_to_shape_map[v]) for v in var_to_shape_map]
return np.sum(var_sizes, dtype=int)
def print_tensors_in_checkpoint_file(file_name, tensor_name, all_tensors,
all_tensor_names=False,
count_exclude_pattern=""):
"""Prints tensors in a checkpoint file.
If no `tensor_name` is provided, prints the tensor names and shapes
in the checkpoint file.
If `tensor_name` is provided, prints the content of the tensor.
Args:
file_name: Name of the checkpoint file.
tensor_name: Name of the tensor in the checkpoint file to print.
all_tensors: Boolean indicating whether to print all tensors.
all_tensor_names: Boolean indicating whether to print all tensor names.
count_exclude_pattern: Regex string, pattern to exclude tensors when count.
"""
try:
reader = py_checkpoint_reader.NewCheckpointReader(file_name)
if all_tensors or all_tensor_names:
var_to_shape_map = reader.get_variable_to_shape_map()
var_to_dtype_map = reader.get_variable_to_dtype_map()
for key, value in sorted(var_to_shape_map.items()):
print("tensor: %s (%s) %s" % (key, var_to_dtype_map[key].name, value))
if all_tensors:
try:
print(reader.get_tensor(key))
except errors_impl.InternalError:
print("<not convertible to a numpy dtype>")
elif not tensor_name:
print(reader.debug_string().decode("utf-8", errors="ignore"))
else:
if not reader.has_tensor(tensor_name):
print("Tensor %s not found in checkpoint" % tensor_name)
return
var_to_shape_map = reader.get_variable_to_shape_map()
var_to_dtype_map = reader.get_variable_to_dtype_map()
print("tensor: %s (%s) %s" %
(tensor_name, var_to_dtype_map[tensor_name].name,
var_to_shape_map[tensor_name]))
print(reader.get_tensor(tensor_name))
# Count total number of parameters
print("# Total number of params: %d" % _count_total_params(
reader, count_exclude_pattern=count_exclude_pattern))
except Exception as e: # pylint: disable=broad-except
print(str(e))
if "corrupted compressed block contents" in str(e):
print("It's likely that your checkpoint file has been compressed "
"with SNAPPY.")
if ("Data loss" in str(e) and
any(e in file_name for e in [".index", ".meta", ".data"])):
proposed_file = ".".join(file_name.split(".")[0:-1])
v2_file_error_template = """
It's likely that this is a V2 checkpoint and you need to provide the filename
*prefix*. Try removing the '.' and extension. Try:
inspect checkpoint --file_name = {}"""
print(v2_file_error_template.format(proposed_file))
def parse_numpy_printoption(kv_str):
"""Sets a single numpy printoption from a string of the form 'x=y'.
See documentation on numpy.set_printoptions() for details about what values
x and y can take. x can be any option listed there other than 'formatter'.
Args:
kv_str: A string of the form 'x=y', such as 'threshold=100000'
Raises:
argparse.ArgumentTypeError: If the string couldn't be used to set any
nump printoption.
"""
k_v_str = kv_str.split("=", 1)
if len(k_v_str) != 2 or not k_v_str[0]:
raise argparse.ArgumentTypeError("'%s' is not in the form k=v." % kv_str)
k, v_str = k_v_str
printoptions = np.get_printoptions()
if k not in printoptions:
raise argparse.ArgumentTypeError("'%s' is not a valid printoption." % k)
v_type = type(printoptions[k])
if v_type is type(None):
raise argparse.ArgumentTypeError(
"Setting '%s' from the command line is not supported." % k)
try:
v = (
v_type(v_str)
if v_type is not bool else flags.BooleanParser().parse(v_str))
except ValueError as e:
raise argparse.ArgumentTypeError(e.message)
np.set_printoptions(**{k: v})
def main(unused_argv):
if not FLAGS.file_name:
print("Usage: inspect_checkpoint --file_name=checkpoint_file_name "
"[--tensor_name=tensor_to_print] "
"[--all_tensors] "
"[--all_tensor_names] "
"[--printoptions]")
sys.exit(1)
else:
print_tensors_in_checkpoint_file(
FLAGS.file_name, FLAGS.tensor_name,
FLAGS.all_tensors, FLAGS.all_tensor_names,
count_exclude_pattern=FLAGS.count_exclude_pattern)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.register("type", "bool", lambda v: v.lower() == "true")
parser.add_argument(
"--file_name",
type=str,
default="",
help="Checkpoint filename. "
"Note, if using Checkpoint V2 format, file_name is the "
"shared prefix between all files in the checkpoint.")
parser.add_argument(
"--tensor_name",
type=str,
default="",
help="Name of the tensor to inspect")
parser.add_argument(
"--count_exclude_pattern",
type=str,
default="",
help="Pattern to exclude tensors, e.g., from optimizers, when counting.")
parser.add_argument(
"--all_tensors",
nargs="?",
const=True,
type="bool",
default=False,
help="If True, print the names and values of all the tensors.")
parser.add_argument(
"--all_tensor_names",
nargs="?",
const=True,
type="bool",
default=False,
help="If True, print the names of all the tensors.")
parser.add_argument(
"--printoptions",
nargs="*",
type=parse_numpy_printoption,
help="Argument for numpy.set_printoptions(), in the form 'k=v'.")
FLAGS, unparsed = parser.parse_known_args()
app.run(main=main, argv=[sys.argv[0]] + unparsed)