-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathevaluation.py
273 lines (228 loc) · 10.8 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains functions for evaluation and summarization of metrics."""
import math
import time
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import init_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import state_ops
from tensorflow.python.ops import variable_scope
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.training import basic_session_run_hooks
from tensorflow.python.training import monitored_session
from tensorflow.python.training import session_run_hook
def _get_or_create_eval_step():
"""Gets or creates the eval step `Tensor`.
Returns:
A `Tensor` representing a counter for the evaluation step.
Raises:
ValueError: If multiple `Tensors` have been added to the
`tf.GraphKeys.EVAL_STEP` collection.
"""
graph = ops.get_default_graph()
eval_steps = graph.get_collection(ops.GraphKeys.EVAL_STEP)
if len(eval_steps) == 1:
return eval_steps[0]
elif len(eval_steps) > 1:
raise ValueError('Multiple tensors added to tf.GraphKeys.EVAL_STEP')
else:
counter = variable_scope.get_variable(
'eval_step',
shape=[],
dtype=dtypes.int64,
initializer=init_ops.zeros_initializer(),
trainable=False,
collections=[ops.GraphKeys.LOCAL_VARIABLES, ops.GraphKeys.EVAL_STEP])
return counter
def _get_latest_eval_step_value(update_ops):
"""Gets the eval step `Tensor` value after running `update_ops`.
Args:
update_ops: A list of `Tensors` or a dictionary of names to `Tensors`, which
are run before reading the eval step value.
Returns:
A `Tensor` representing the value for the evaluation step.
"""
if isinstance(update_ops, dict):
update_ops = list(update_ops.values())
with ops.control_dependencies(update_ops):
return array_ops.identity(_get_or_create_eval_step().read_value())
class _MultiStepStopAfterNEvalsHook(session_run_hook.SessionRunHook):
"""Run hook used by the evaluation routines to run the `eval_ops` N times."""
def __init__(self, num_evals, steps_per_run=1):
"""Constructs the run hook.
Args:
num_evals: The number of evaluations to run for. if set to None, will
iterate the dataset until all inputs are exhausted.
steps_per_run: Number of steps executed per run call.
"""
self._num_evals = num_evals
self._evals_completed = None
self._steps_per_run_initial_value = steps_per_run
def _set_evals_completed_tensor(self, updated_eval_step):
self._evals_completed = updated_eval_step
def begin(self):
self._steps_per_run_variable = \
basic_session_run_hooks.get_or_create_steps_per_run_variable()
def after_create_session(self, session, coord):
# Update number of steps to run in the first run call
if self._num_evals is None:
steps = self._steps_per_run_initial_value
else:
steps = min(self._steps_per_run_initial_value, self._num_evals)
self._steps_per_run_variable.load(steps, session=session)
def before_run(self, run_context):
return session_run_hook.SessionRunArgs(
{'evals_completed': self._evals_completed})
def after_run(self, run_context, run_values):
evals_completed = run_values.results['evals_completed']
# Update number of steps to run in the next iteration
if self._num_evals is None:
steps = self._steps_per_run_initial_value
else:
steps = min(self._num_evals - evals_completed,
self._steps_per_run_initial_value)
self._steps_per_run_variable.load(steps, session=run_context.session)
if self._num_evals is None:
logging.info('Evaluation [%d]', evals_completed)
else:
logging.info('Evaluation [%d/%d]', evals_completed, self._num_evals)
if self._num_evals is not None and evals_completed >= self._num_evals:
run_context.request_stop()
class _StopAfterNEvalsHook(session_run_hook.SessionRunHook):
"""Run hook used by the evaluation routines to run the `eval_ops` N times."""
def __init__(self, num_evals, log_progress=True):
"""Constructs the run hook.
Args:
num_evals: The number of evaluations to run for. if set to None, will
iterate the dataset until all inputs are exhausted.
log_progress: Whether to log evaluation progress, defaults to True.
"""
# The number of evals to run for.
self._num_evals = num_evals
self._evals_completed = None
self._log_progress = log_progress
# Reduce logging frequency if there are 20 or more evaluations.
self._log_frequency = (1 if (num_evals is None or num_evals < 20) else
math.floor(num_evals / 10.))
def _set_evals_completed_tensor(self, updated_eval_step):
self._evals_completed = updated_eval_step
def before_run(self, run_context):
return session_run_hook.SessionRunArgs(
{'evals_completed': self._evals_completed})
def after_run(self, run_context, run_values):
evals_completed = run_values.results['evals_completed']
if self._log_progress:
if self._num_evals is None:
logging.info('Evaluation [%d]', evals_completed)
else:
if ((evals_completed % self._log_frequency) == 0 or
(self._num_evals == evals_completed)):
logging.info('Evaluation [%d/%d]', evals_completed, self._num_evals)
if self._num_evals is not None and evals_completed >= self._num_evals:
run_context.request_stop()
def _evaluate_once(checkpoint_path,
master='',
scaffold=None,
eval_ops=None,
feed_dict=None,
final_ops=None,
final_ops_feed_dict=None,
hooks=None,
config=None):
"""Evaluates the model at the given checkpoint path.
During a single evaluation, the `eval_ops` is run until the session is
interrupted or requested to finish. This is typically requested via a
`tf.contrib.training.StopAfterNEvalsHook` which results in `eval_ops` running
the requested number of times.
Optionally, a user can pass in `final_ops`, a single `Tensor`, a list of
`Tensors` or a dictionary from names to `Tensors`. The `final_ops` is
evaluated a single time after `eval_ops` has finished running and the fetched
values of `final_ops` are returned. If `final_ops` is left as `None`, then
`None` is returned.
One may also consider using a `tf.contrib.training.SummaryAtEndHook` to record
summaries after the `eval_ops` have run. If `eval_ops` is `None`, the
summaries run immediately after the model checkpoint has been restored.
Note that `evaluate_once` creates a local variable used to track the number of
evaluations run via `tf.contrib.training.get_or_create_eval_step`.
Consequently, if a custom local init op is provided via a `scaffold`, the
caller should ensure that the local init op also initializes the eval step.
Args:
checkpoint_path: The path to a checkpoint to use for evaluation.
master: The BNS address of the TensorFlow master.
scaffold: An tf.compat.v1.train.Scaffold instance for initializing variables
and restoring variables. Note that `scaffold.init_fn` is used by the
function to restore the checkpoint. If you supply a custom init_fn, then
it must also take care of restoring the model from its checkpoint.
eval_ops: A single `Tensor`, a list of `Tensors` or a dictionary of names to
`Tensors`, which is run until the session is requested to stop, commonly
done by a `tf.contrib.training.StopAfterNEvalsHook`.
feed_dict: The feed dictionary to use when executing the `eval_ops`.
final_ops: A single `Tensor`, a list of `Tensors` or a dictionary of names
to `Tensors`.
final_ops_feed_dict: A feed dictionary to use when evaluating `final_ops`.
hooks: List of `tf.estimator.SessionRunHook` callbacks which are run inside
the evaluation loop.
config: An instance of `tf.compat.v1.ConfigProto` that will be used to
configure the `Session`. If left as `None`, the default will be used.
Returns:
The fetched values of `final_ops` or `None` if `final_ops` is `None`.
"""
eval_step = _get_or_create_eval_step()
# Prepare the run hooks.
hooks = list(hooks or [])
if eval_ops is not None:
if any(isinstance(h, _MultiStepStopAfterNEvalsHook) for h in hooks):
steps_per_run_variable = \
basic_session_run_hooks.get_or_create_steps_per_run_variable()
update_eval_step = state_ops.assign_add(
eval_step,
math_ops.cast(steps_per_run_variable, dtype=eval_step.dtype),
use_locking=True)
else:
update_eval_step = state_ops.assign_add(eval_step, 1, use_locking=True)
if isinstance(eval_ops, dict):
eval_ops['update_eval_step'] = update_eval_step
elif isinstance(eval_ops, (tuple, list)):
eval_ops = list(eval_ops) + [update_eval_step]
else:
eval_ops = [eval_ops, update_eval_step]
eval_step_value = _get_latest_eval_step_value(eval_ops)
for h in hooks:
if isinstance(h, (_StopAfterNEvalsHook, _MultiStepStopAfterNEvalsHook)):
h._set_evals_completed_tensor(eval_step_value) # pylint: disable=protected-access
logging.info('Starting evaluation at ' +
time.strftime('%Y-%m-%dT%H:%M:%S', time.localtime()))
start = time.time()
# Prepare the session creator.
session_creator = monitored_session.ChiefSessionCreator(
scaffold=scaffold,
checkpoint_filename_with_path=checkpoint_path,
master=master,
config=config)
final_ops_hook = basic_session_run_hooks.FinalOpsHook(final_ops,
final_ops_feed_dict)
hooks.append(final_ops_hook)
with monitored_session.MonitoredSession(
session_creator=session_creator, hooks=hooks) as session:
if eval_ops is not None:
while not session.should_stop():
session.run(eval_ops, feed_dict)
logging.info('Inference Time : {:0.5f}s'.format(time.time() - start))
logging.info('Finished evaluation at ' +
time.strftime('%Y-%m-%d-%H:%M:%S', time.localtime()))
return final_ops_hook.final_ops_values