-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathnest_util.py
1715 lines (1419 loc) · 61.4 KB
/
nest_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Utility methods for handling nests.
This module encapsulates different semantics of handling nests by the public
tf.nest APIs and internal tf.data APIs. The difference in semantics exists for
historic reasons and reconciliation would require a non-backwards compatible
change.
The implementation of the different semantics use a common utility to
avoid / minimize further divergence between the two APIs over time.
"""
import collections as _collections
import enum
import six as _six
import wrapt as _wrapt
from tensorflow.python import pywrap_tensorflow # pylint: disable=unused-import
from tensorflow.python.platform import tf_logging
from tensorflow.python.util import _pywrap_utils
from tensorflow.python.util.compat import collections_abc as _collections_abc
_is_mapping_view = _pywrap_utils.IsMappingView
_is_attrs = _pywrap_utils.IsAttrs
_is_composite_tensor = _pywrap_utils.IsCompositeTensor
_is_type_spec = _pywrap_utils.IsTypeSpec
_is_mutable_mapping = _pywrap_utils.IsMutableMapping
_is_mapping = _pywrap_utils.IsMapping
_tf_data_is_nested = _pywrap_utils.IsNestedForData
_tf_data_flatten = _pywrap_utils.FlattenForData
_tf_core_is_nested = _pywrap_utils.IsNested
_is_nested_or_composite = _pywrap_utils.IsNestedOrComposite
# See the swig file (util.i) for documentation.
same_namedtuples = _pywrap_utils.SameNamedtuples
STRUCTURES_HAVE_MISMATCHING_TYPES = (
"The two structures don't have the same sequence type. Input structure has "
"type {input_type}, while shallow structure has type {shallow_type}."
)
STRUCTURES_HAVE_MISMATCHING_LENGTHS = (
"The two structures don't have the same sequence length. Input "
"structure has length {input_length}, while shallow structure has length "
"{shallow_length}."
)
INPUT_TREE_SMALLER_THAN_SHALLOW_TREE = (
"The input_tree has fewer items than the shallow_tree. Input structure "
"has length {input_size}, while shallow structure has length "
"{shallow_size}."
)
SHALLOW_TREE_HAS_INVALID_KEYS = (
"The shallow_tree's keys are not a subset of the input_tree's keys. The "
"shallow_tree has the following keys that are not in the input_tree: {}."
)
class Modality(enum.Enum):
"""Modality/semantic used for treating nested structures.
- Modality.CORE follows tensorflow_core/tf.nest semantics.
The following collection types are recognized by `tf.nest` as nested
structures:
* `collections.abc.Sequence` (except `string` and `bytes`).
This includes `list`, `tuple`, and `namedtuple`.
* `collections.abc.Mapping` (with sortable keys).
This includes `dict` and `collections.OrderedDict`.
* `collections.abc.MappingView` (with sortable keys).
* [`attr.s` classes](https://www.attrs.org/).
Any other values are considered **atoms**. Not all collection types are
considered nested structures. For example, the following types are
considered atoms:
* `set`; `{"a", "b"}` is an atom, while `["a", "b"]` is a nested structure.
* [`dataclass` classes](https://docs.python.org/library/dataclasses.html)
* `tf.Tensor`
* `numpy.array`
- Modality.DATA follows tf.data's nest semantics.
This modality makes two changes:
1. It removes support for lists as a level of nesting in nested structures.
2. It adds support for `SparseTensorValue` as an atomic element.
The motivation for this change is twofold:
1. It seems more natural for lists to be treated (e.g. in Dataset
constructors)
as tensors, rather than lists of (lists of...) tensors.
2. This is needed because `SparseTensorValue` is implemented as a `namedtuple`
that would normally be flattened and we want to be able to create sparse
tensor from `SparseTensorValue's similarly to creating tensors from numpy
arrays.
"""
CORE = "CORE"
DATA = "DATA"
class _DotString(object):
__slots__ = []
def __str__(self):
return "."
def __repr__(self):
return "."
_DOT = _DotString()
def is_nested(modality, structure):
"""Returns true if its input is a nested structure.
For Modality.CORE refer to
[tf.nest](https://www.tensorflow.org/api_docs/python/tf/nest)
for the definition of a nested structure.
Args:
modality: enum value of supported modality [Modality.CORE or Modality.DATA]
structure: the value to test.
Returns:
True if the input is a nested structure.
"""
if modality == Modality.CORE:
return _tf_core_is_nested(structure)
elif modality == Modality.DATA:
return _tf_data_is_nested(structure)
else:
raise ValueError(
"Unknown modality used {} for nested structure".format(modality)
)
# TODO(b/225045380): Move to a "leaf" library to use in trace_type.
def is_namedtuple(instance, strict=False):
"""Returns True iff `instance` is a `namedtuple`.
Args:
instance: An instance of a Python object.
strict: If True, `instance` is considered to be a `namedtuple` only if it is
a "plain" namedtuple. For instance, a class inheriting from a `namedtuple`
will be considered to be a `namedtuple` iff `strict=False`.
Returns:
True if `instance` is a `namedtuple`.
"""
return _pywrap_utils.IsNamedtuple(instance, strict)
def sequence_like(instance, args):
"""Converts the sequence `args` to the same type as `instance`.
Args:
instance: an instance of `tuple`, `list`, `namedtuple`, `dict`,
`collections.OrderedDict`, or `composite_tensor.Composite_Tensor` or
`type_spec.TypeSpec`.
args: items to be converted to the `instance` type.
Returns:
`args` with the type of `instance`.
"""
if _is_mutable_mapping(instance):
# Pack dictionaries in a deterministic order by sorting the keys.
# Notice this means that we ignore the original order of `OrderedDict`
# instances. This is intentional, to avoid potential bugs caused by mixing
# ordered and plain dicts (e.g., flattening a dict but using a
# corresponding `OrderedDict` to pack it back).
result = dict(zip(_tf_core_sorted(instance), args))
instance_type = type(instance)
if instance_type == _collections.defaultdict:
d = _collections.defaultdict(instance.default_factory)
else:
d = instance_type()
for key in instance:
d[key] = result[key]
return d
elif _is_mapping(instance):
result = dict(zip(_tf_core_sorted(instance), args))
instance_type = type(instance)
if not getattr(instance_type, "__supported_by_tf_nest__", False):
tf_logging.log_first_n(
tf_logging.WARN,
"Mapping types may not work well with tf.nest. "
"Prefer using MutableMapping for {}".format(instance_type),
1,
)
try:
return instance_type((key, result[key]) for key in instance)
except TypeError as err:
# pylint: disable=raise-missing-from
raise TypeError(
"Error creating an object of type {} like {}. Note that "
"it must accept a single positional argument "
"representing an iterable of key-value pairs, in "
"addition to self. Cause: {}".format(type(instance), instance, err)
)
elif _is_mapping_view(instance):
# We can't directly construct mapping views, so we create a list instead
return list(args)
elif is_namedtuple(instance) or _is_attrs(instance):
if isinstance(instance, _wrapt.ObjectProxy):
instance_type = type(instance.__wrapped__)
else:
instance_type = type(instance)
return instance_type(*args)
elif _is_composite_tensor(instance):
assert len(args) == 1
spec = instance._type_spec # pylint: disable=protected-access
return spec._from_components(args[0]) # pylint: disable=protected-access
elif _is_type_spec(instance):
# Pack a CompositeTensor's components according to a TypeSpec.
assert len(args) == 1
return instance._from_components(args[0]) # pylint: disable=protected-access
elif isinstance(instance, _six.moves.range):
return sequence_like(list(instance), args)
elif isinstance(instance, _wrapt.ObjectProxy):
# For object proxies, first create the underlying type and then re-wrap it
# in the proxy type.
return type(instance)(sequence_like(instance.__wrapped__, args))
else:
# Not a namedtuple
return type(instance)(args)
def _get_attrs_items(obj):
"""Returns a list of (name, value) pairs from an attrs instance.
TODO(b/268078256): check if this comment is valid, and if so, ensure it's
handled in the function below.
The list will be sorted by name.
Args:
obj: an object.
Returns:
A list of (attr_name, attr_value) pairs, sorted by attr_name.
"""
attrs = getattr(obj.__class__, "__attrs_attrs__")
attr_names = (a.name for a in attrs)
return [(attr_name, getattr(obj, attr_name)) for attr_name in attr_names]
def _tf_core_sorted(dict_):
"""Returns a sorted list of the dict keys, with error if keys not sortable."""
try:
return sorted(dict_.keys())
except TypeError:
# pylint: disable=raise-missing-from
raise TypeError("nest only supports dicts with sortable keys.")
def _tf_data_sorted(dict_):
"""Returns a sorted list of the dict keys, with error if keys not sortable."""
try:
return sorted(list(dict_))
except TypeError as e:
# pylint: disable=raise-missing-from
raise TypeError(
f"nest only supports dicts with sortable keys. Error: {e.message}"
)
def yield_value(modality, iterable):
"""Yield elements of `iterable` in a deterministic order.
Args:
modality: enum value of supported modality [Modality.CORE or Modality.DATA]
iterable: an iterable.
Yields:
The iterable elements in a deterministic order.
"""
if modality == Modality.CORE:
yield from _tf_core_yield_value(iterable)
elif modality == Modality.DATA:
yield from _tf_data_yield_value(iterable)
else:
raise ValueError(
"Unknown modality used {} for nested structure".format(modality)
)
def _tf_core_yield_value(iterable):
for _, v in _tf_core_yield_sorted_items(iterable):
yield v
def yield_sorted_items(modality, iterable):
if modality == Modality.CORE:
return _tf_core_yield_sorted_items(iterable)
else:
raise ValueError(
"Unknown modality used {} for nested structure".format(modality)
)
def _tf_core_yield_sorted_items(iterable):
"""Yield (key, value) pairs for `iterable` in a deterministic order.
For Sequences, the key will be an int, the array index of a value.
For Mappings, the key will be the dictionary key.
For objects (e.g. namedtuples), the key will be the attribute name.
In all cases, the keys will be iterated in sorted order.
Args:
iterable: an iterable.
Yields:
The iterable's (key, value) pairs, in order of sorted keys.
"""
# Ordered to check common structure types (list, tuple, dict) first.
if isinstance(iterable, list):
for item in enumerate(iterable):
yield item
# namedtuples handled separately to avoid expensive namedtuple check.
elif type(iterable) == tuple: # pylint: disable=unidiomatic-typecheck
for item in enumerate(iterable):
yield item
elif isinstance(iterable, (dict, _collections_abc.Mapping)):
# Iterate through dictionaries in a deterministic order by sorting the
# keys. Notice this means that we ignore the original order of `OrderedDict`
# instances. This is intentional, to avoid potential bugs caused by mixing
# ordered and plain dicts (e.g., flattening a dict but using a
# corresponding `OrderedDict` to pack it back).
for key in _tf_core_sorted(iterable):
yield key, iterable[key]
elif _is_attrs(iterable):
for item in _get_attrs_items(iterable):
yield item
elif is_namedtuple(iterable):
for field in iterable._fields:
yield field, getattr(iterable, field)
elif _is_composite_tensor(iterable):
type_spec = iterable._type_spec # pylint: disable=protected-access
yield type_spec.value_type.__name__, type_spec._to_components(iterable) # pylint: disable=protected-access
elif _is_type_spec(iterable):
# Note: to allow CompositeTensors and their TypeSpecs to have matching
# structures, we need to use the same key string here.
yield iterable.value_type.__name__, iterable._component_specs # pylint: disable=protected-access
else:
for item in enumerate(iterable):
yield item
def _tf_data_yield_value(iterable):
"""Yield elements of `iterable` in a deterministic order.
Args:
iterable: an iterable.
Yields:
The iterable elements in a deterministic order.
"""
# pylint: disable=protected-access
if isinstance(iterable, _collections_abc.Mapping):
# Iterate through dictionaries in a deterministic order by sorting the
# keys. Notice this means that we ignore the original order of `OrderedDict`
# instances. This is intentional, to avoid potential bugs caused by mixing
# ordered and plain dicts (e.g., flattening a dict but using a
# corresponding `OrderedDict` to pack it back).
for key in _tf_data_sorted(iterable):
yield iterable[key]
# To avoid circular imports. sparse_tensor
# depends on tensorflow/python/util/nest.py transitively, and if we try to
# import sparse_tensor again, it results in a circular import. Instead, here
# we check the class name instead of using `isinstance`.
elif iterable.__class__.__name__ == "SparseTensorValue":
yield iterable
elif _is_attrs(iterable):
for _, attr in _get_attrs_items(iterable):
yield attr
else:
for value in iterable:
yield value
def assert_same_structure(
modality, nest1, nest2, check_types=True, expand_composites=False
):
"""Asserts that two structures are nested in the same way.
For Modality.CORE refer to
[tf.nest](https://www.tensorflow.org/api_docs/python/tf/nest)
for the definition of a structure. Note the method does not check the types of
atoms inside the structures.
Examples:
* These atom vs. atom comparisons will pass:
>>> tf.nest.assert_same_structure(1.5, tf.Variable(1, tf.uint32))
>>> tf.nest.assert_same_structure("abc", np.array([1, 2]))
* These nested structure vs. nested structure comparisons will pass:
>>> structure1 = (((1, 2), 3), 4, (5, 6))
>>> structure2 = ((("foo1", "foo2"), "foo3"), "foo4", ("foo5", "foo6"))
>>> structure3 = [(("a", "b"), "c"), "d", ["e", "f"]]
>>> tf.nest.assert_same_structure(structure1, structure2)
>>> tf.nest.assert_same_structure(structure1, structure3, check_types=False)
>>> import collections
>>> tf.nest.assert_same_structure(
... collections.namedtuple("bar", "a b")(1, 2),
... collections.namedtuple("foo", "a b")(2, 3),
... check_types=False)
>>> tf.nest.assert_same_structure(
... collections.namedtuple("bar", "a b")(1, 2),
... { "a": 1, "b": 2 },
... check_types=False)
>>> tf.nest.assert_same_structure(
... { "a": 1, "b": 2, "c": 3 },
... { "c": 6, "b": 5, "a": 4 })
>>> ragged_tensor1 = tf.RaggedTensor.from_row_splits(
... values=[3, 1, 4, 1, 5, 9, 2, 6],
... row_splits=[0, 4, 4, 7, 8, 8])
>>> ragged_tensor2 = tf.RaggedTensor.from_row_splits(
... values=[3, 1, 4],
... row_splits=[0, 3])
>>> tf.nest.assert_same_structure(
... ragged_tensor1,
... ragged_tensor2,
... expand_composites=True)
* These examples will raise exceptions:
>>> tf.nest.assert_same_structure([0, 1], np.array([0, 1]))
Traceback (most recent call last):
...
ValueError: The two structures don't have the same nested structure
>>> tf.nest.assert_same_structure(
... collections.namedtuple('bar', 'a b')(1, 2),
... collections.namedtuple('foo', 'a b')(2, 3))
Traceback (most recent call last):
...
TypeError: The two structures don't have the same nested structure
For Modality.DATA, nested structures are treated differently than
Modality.CORE. Please refer to class Modality's documentation above to read up
on these differences.
Args:
modality: enum value of supported modality [Modality.CORE or Modality.DATA]
nest1: an atom or a nested structure.
nest2: an atom or a nested structure.
check_types: - For Modality.CORE: if `True` (default) types of structures
are checked as well, including the keys of dictionaries. If set to
`False`, for example a list and a tuple of objects will look the same if
they have the same size. Note that namedtuples with identical name and
fields are always considered to have the same shallow structure. Two types
will also be considered the same if they are both list subtypes (which
allows "list" and "_ListWrapper" from trackable dependency tracking to
compare equal). `check_types=True` only checks type of sub-structures. The
types of atoms are not checked. - For Modality.DATA: if `True` (default)
types of sequences should be same as well. For dictionary, "type" of
dictionary is considered to include its keys. In other words, two
dictionaries with different keys are considered to have a different
"type". If set to `False`, two iterables are considered same as long as
they yield the elements that have same structures.
expand_composites: Arg only valid for Modality.CORE. If true, then composite
tensors such as `tf.sparse.SparseTensor` and `tf.RaggedTensor` are
expanded into their component tensors.
Raises:
ValueError: If the two structures do not have the same number of atoms or
if the two structures are not nested in the same way.
TypeError: If the two structures differ in the type of sequence in any of
their substructures. Only possible if `check_types` is `True`.
"""
if modality == Modality.CORE:
_tf_core_assert_same_structure(nest1, nest2, check_types, expand_composites)
elif modality == Modality.DATA:
_tf_data_assert_same_structure(nest1, nest2, check_types)
else:
raise ValueError(
"Unknown modality used {} for nested structure".format(modality)
)
# pylint: disable=missing-function-docstring
def _tf_core_assert_same_structure(
nest1, nest2, check_types=True, expand_composites=False
):
# Convert to bool explicitly as otherwise pybind will not be able# to handle
# type mismatch message correctly. See GitHub issue 42329 for details.
check_types = bool(check_types)
expand_composites = bool(expand_composites)
try:
_pywrap_utils.AssertSameStructure(
nest1, nest2, check_types, expand_composites
)
except (ValueError, TypeError) as e:
str1 = str(_tf_core_map_structure(lambda _: _DOT, nest1))
str2 = str(_tf_core_map_structure(lambda _: _DOT, nest2))
raise type(e)(
"%s\nEntire first structure:\n%s\nEntire second structure:\n%s"
% (str(e), str1, str2)
)
def _tf_data_assert_same_structure(nest1, nest2, check_types=True):
_pywrap_utils.AssertSameStructureForData(nest1, nest2, check_types)
def _tf_core_packed_nest_with_indices(
structure, flat, index, is_nested_fn, sequence_fn=None
):
"""Helper function for pack_sequence_as.
Args:
structure: structure to mimic.
flat: Flattened values to output substructure for.
index: Index at which to start reading from flat.
is_nested_fn: Function used to test if a value should be treated as a nested
structure.
sequence_fn: Function used to generate a new strcuture instance.
Returns:
The tuple (new_index, child), where:
* new_index - the updated index into `flat` having processed `structure`.
* packed - the subset of `flat` corresponding to `structure`,
having started at `index`, and packed into the same nested
format.
Raises:
ValueError: if `structure` contains more atoms than `flat`
(assuming indexing starts from `index`).
"""
packed = []
sequence_fn = sequence_fn or sequence_like
for s in _tf_core_yield_value(structure):
if is_nested_fn(s):
new_index, child = _tf_core_packed_nest_with_indices(
s, flat, index, is_nested_fn, sequence_fn
)
packed.append(sequence_fn(s, child))
index = new_index
else:
packed.append(flat[index])
index += 1
return index, packed
def _tf_data_packed_nest_with_indices(structure, flat, index):
"""Helper function for pack_nest_as.
Args:
structure: Substructure (tuple of elements and/or tuples) to mimic
flat: Flattened values to output substructure for.
index: Index at which to start reading from flat.
Returns:
The tuple (new_index, child), where:
* new_index - the updated index into `flat` having processed `structure`.
* packed - the subset of `flat` corresponding to `structure`,
having started at `index`, and packed into the same nested
format.
Raises:
ValueError: if `structure` contains more elements than `flat`
(assuming indexing starts from `index`).
"""
packed = []
for s in _tf_data_yield_value(structure):
if _tf_data_is_nested(s):
new_index, child = _tf_data_packed_nest_with_indices(s, flat, index)
packed.append(sequence_like(s, child)) # pylint: disable=protected-access
index = new_index
else:
packed.append(flat[index])
index += 1
return index, packed
def flatten(modality, structure, expand_composites=False):
"""Flattens a nested structure.
- For Modality.CORE: refer to
[tf.nest](https://www.tensorflow.org/api_docs/python/tf/nest)
for the definition of a structure.
If the structure is an atom, then returns a single-item list: [structure].
This is the inverse of the `nest.pack_sequence_as` method that takes in a
flattened list and re-packs it into the nested structure.
In the case of dict instances, the sequence consists of the values, sorted by
key to ensure deterministic behavior. This is true also for OrderedDict
instances: their sequence order is ignored, the sorting order of keys is used
instead. The same convention is followed in `nest.pack_sequence_as`. This
correctly repacks dicts and OrderedDicts after they have been flattened, and
also allows flattening an OrderedDict and then repacking it back using a
corresponding plain dict, or vice-versa. Dictionaries with non-sortable keys
cannot be flattened.
Users must not modify any collections used in nest while this function is
running.
Examples:
1. Python dict (ordered by key):
>>> dict = { "key3": "value3", "key1": "value1", "key2": "value2" }
>>> tf.nest.flatten(dict)
['value1', 'value2', 'value3']
2. For a nested python tuple:
>>> tuple = ((1.0, 2.0), (3.0, 4.0, 5.0), 6.0)
>>> tf.nest.flatten(tuple)
[1.0, 2.0, 3.0, 4.0, 5.0, 6.0]
3. For a nested dictionary of dictionaries:
>>> dict = { "key3": {"c": (1.0, 2.0), "a": (3.0)},
... "key1": {"m": "val1", "g": "val2"} }
>>> tf.nest.flatten(dict)
['val2', 'val1', 3.0, 1.0, 2.0]
4. Numpy array (will not flatten):
>>> array = np.array([[1, 2], [3, 4]])
>>> tf.nest.flatten(array)
[array([[1, 2],
[3, 4]])]
5. `tf.Tensor` (will not flatten):
>>> tensor = tf.constant([[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]])
>>> tf.nest.flatten(tensor)
[<tf.Tensor: shape=(3, 3), dtype=float32, numpy=
array([[1., 2., 3.],
[4., 5., 6.],
[7., 8., 9.]], dtype=float32)>]
6. `tf.RaggedTensor`: This is a composite tensor thats representation consists
of a flattened list of 'values' and a list of 'row_splits' which indicate how
to chop up the flattened list into different rows. For more details on
`tf.RaggedTensor`, please visit
https://www.tensorflow.org/api_docs/python/tf/RaggedTensor.
with `expand_composites=False`, we just return the RaggedTensor as is.
>>> tensor = tf.ragged.constant([[3, 1, 4, 1], [], [5, 9, 2]])
>>> tf.nest.flatten(tensor, expand_composites=False)
[<tf.RaggedTensor [[3, 1, 4, 1], [], [5, 9, 2]]>]
with `expand_composites=True`, we return the component Tensors that make up
the RaggedTensor representation (the values and row_splits tensors)
>>> tensor = tf.ragged.constant([[3, 1, 4, 1], [], [5, 9, 2]])
>>> tf.nest.flatten(tensor, expand_composites=True)
[<tf.Tensor: shape=(7,), dtype=int32, numpy=array([3, 1, 4, 1, 5, 9, 2],
dtype=int32)>,
<tf.Tensor: shape=(4,), dtype=int64, numpy=array([0, 4, 4, 7])>]
Args:
modality: enum value of supported modality [Modality.CORE or Modality.DATA]
structure: an atom or a nested structure. Note, numpy arrays are considered
atoms and are not flattened.
expand_composites: Arg valid for Modality.CORE only. If true, then composite
tensors such as `tf.sparse.SparseTensor` and `tf.RaggedTensor` are
expanded into their component tensors.
Returns:
A Python list, the flattened version of the input.
Raises:
TypeError: The nest is or contains a dict with non-sortable keys.
"""
if modality == Modality.CORE:
return _tf_core_flatten(structure, expand_composites)
elif modality == Modality.DATA:
return _tf_data_flatten(structure)
else:
raise ValueError(
"Unknown modality used {} for nested structure".format(modality)
)
def _tf_core_flatten(structure, expand_composites=False):
"""See comments for flatten() in tensorflow/python/util/nest.py."""
if structure is None:
return [None]
expand_composites = bool(expand_composites)
return _pywrap_utils.Flatten(structure, expand_composites)
def pack_sequence_as(
modality, structure, flat_sequence, expand_composites, sequence_fn=None
):
"""Returns a given flattened sequence packed into a given structure.
- For Modality.CORE: Refer to
[tf.nest](https://www.tensorflow.org/api_docs/python/tf/nest)
for the definition of a structure.
If `structure` is an atom, `flat_sequence` must be a single-item list;
in this case the return value is `flat_sequence[0]`.
If `structure` is or contains a dict instance, the keys will be sorted to
pack the flat sequence in deterministic order. This is true also for
`OrderedDict` instances: their sequence order is ignored, the sorting order of
keys is used instead. The same convention is followed in `flatten`.
This correctly repacks dicts and `OrderedDict`s after they have been
flattened, and also allows flattening an `OrderedDict` and then repacking it
back using a corresponding plain dict, or vice-versa.
Dictionaries with non-sortable keys cannot be flattened.
Examples:
1. Python dict:
>>> structure = { "key3": "", "key1": "", "key2": "" }
>>> flat_sequence = ["value1", "value2", "value3"]
>>> tf.nest.pack_sequence_as(structure, flat_sequence)
{'key3': 'value3', 'key1': 'value1', 'key2': 'value2'}
2. For a nested python tuple:
>>> structure = (('a','b'), ('c','d','e'), 'f')
>>> flat_sequence = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0]
>>> tf.nest.pack_sequence_as(structure, flat_sequence)
((1.0, 2.0), (3.0, 4.0, 5.0), 6.0)
3. For a nested dictionary of dictionaries:
>>> structure = { "key3": {"c": ('alpha', 'beta'), "a": ('gamma')},
... "key1": {"e": "val1", "d": "val2"} }
>>> flat_sequence = ['val2', 'val1', 3.0, 1.0, 2.0]
>>> tf.nest.pack_sequence_as(structure, flat_sequence)
{'key3': {'c': (1.0, 2.0), 'a': 3.0}, 'key1': {'e': 'val1', 'd': 'val2'}}
4. Numpy array (considered a scalar):
>>> structure = ['a']
>>> flat_sequence = [np.array([[1, 2], [3, 4]])]
>>> tf.nest.pack_sequence_as(structure, flat_sequence)
[array([[1, 2],
[3, 4]])]
5. tf.Tensor (considered a scalar):
>>> structure = ['a']
>>> flat_sequence = [tf.constant([[1., 2., 3.], [4., 5., 6.]])]
>>> tf.nest.pack_sequence_as(structure, flat_sequence)
[<tf.Tensor: shape=(2, 3), dtype=float32,
numpy= array([[1., 2., 3.], [4., 5., 6.]], dtype=float32)>]
6. `tf.RaggedTensor`: This is a composite tensor thats representation consists
of a flattened list of 'values' and a list of 'row_splits' which indicate how
to chop up the flattened list into different rows. For more details on
`tf.RaggedTensor`, please visit
https://www.tensorflow.org/api_docs/python/tf/RaggedTensor.
With `expand_composites=False`, we treat RaggedTensor as a scalar.
>>> structure = { "foo": tf.ragged.constant([[1, 2], [3]]),
... "bar": tf.constant([[5]]) }
>>> flat_sequence = [ "one", "two" ]
>>> tf.nest.pack_sequence_as(structure, flat_sequence,
... expand_composites=False)
{'foo': 'two', 'bar': 'one'}
With `expand_composites=True`, we expect that the flattened input contains
the tensors making up the ragged tensor i.e. the values and row_splits
tensors.
>>> structure = { "foo": tf.ragged.constant([[1., 2.], [3.]]),
... "bar": tf.constant([[5.]]) }
>>> tensors = tf.nest.flatten(structure, expand_composites=True)
>>> print(tensors)
[<tf.Tensor: shape=(1, 1), dtype=float32, numpy=array([[5.]],
dtype=float32)>,
<tf.Tensor: shape=(3,), dtype=float32, numpy=array([1., 2., 3.],
dtype=float32)>,
<tf.Tensor: shape=(3,), dtype=int64, numpy=array([0, 2, 3])>]
>>> verified_tensors = [tf.debugging.check_numerics(t, 'invalid tensor: ')
... if t.dtype==tf.float32 else t
... for t in tensors]
>>> tf.nest.pack_sequence_as(structure, verified_tensors,
... expand_composites=True)
{'foo': <tf.RaggedTensor [[1.0, 2.0], [3.0]]>,
'bar': <tf.Tensor: shape=(1, 1), dtype=float32, numpy=array([[5.]],
dtype=float32)>}
- For Modality.DATA: If `structure` is a scalar, `flat_sequence` must be a
single-element list;
in this case the return value is `flat_sequence[0]`.
Args:
modality: enum value of supported modality [Modality.CORE or Modality.DATA]
structure: - For Modality.CORE: Nested structure, whose structure is given
by nested lists, tuples, and dicts. Note: numpy arrays and strings are
considered scalars. - For Modality.DATA: tuple or list constructed of
scalars and/or other tuples/lists, or a scalar. Note: numpy arrays are
considered scalars.
flat_sequence: flat sequence to pack.
expand_composites: Arg valid for Modality.CORE only. If true, then composite
tensors such as `tf.sparse.SparseTensor` and `tf.RaggedTensor` are
expanded into their component tensors.
sequence_fn: Arg valid for Modality.CORE only.
Returns:
packed: `flat_sequence` converted to have the same recursive structure as
`structure`.
Raises:
ValueError: If `flat_sequence` and `structure` have different
atom counts.
TypeError: For Modality.CORE only. `structure` is or contains a dict with
non-sortable keys.
"""
if modality == Modality.CORE:
return _tf_core_pack_sequence_as(
structure, flat_sequence, expand_composites, sequence_fn
)
elif modality == Modality.DATA:
return _tf_data_pack_sequence_as(structure, flat_sequence)
else:
raise ValueError(
"Unknown modality used {} for nested structure".format(modality)
)
def _tf_core_pack_sequence_as(
structure, flat_sequence, expand_composites, sequence_fn=None
):
"""Implements sequence packing, with the option to alter the structure."""
is_nested_fn = (
_is_nested_or_composite if expand_composites else _tf_core_is_nested
)
sequence_fn = sequence_fn or sequence_like
def truncate(value, length):
value_str = str(value)
return value_str[:length] + (value_str[length:] and "...")
if not is_nested_fn(flat_sequence):
raise TypeError(
"Attempted to pack value:\n {}\ninto a structure, but found "
"incompatible type `{}` instead.".format(
truncate(flat_sequence, 100), type(flat_sequence)
)
)
if not is_nested_fn(structure):
if len(flat_sequence) != 1:
raise ValueError(
"The target structure is of type `{}`\n {}\nHowever the input "
"is a sequence ({}) of length {}.\n {}\nnest cannot "
"guarantee that it is safe to map one to the other.".format(
type(structure),
truncate(structure, 100),
type(flat_sequence),
len(flat_sequence),
truncate(flat_sequence, 100),
)
)
return flat_sequence[0]
try:
final_index, packed = _tf_core_packed_nest_with_indices(
structure, flat_sequence, 0, is_nested_fn, sequence_fn
)
if final_index < len(flat_sequence):
raise IndexError
except IndexError:
flat_structure = _tf_core_flatten(
structure, expand_composites=expand_composites
)
if len(flat_structure) != len(flat_sequence):
# pylint: disable=raise-missing-from
raise ValueError(
"Could not pack sequence. Structure had %d atoms, but "
"flat_sequence had %d items. Structure: %s, flat_sequence: %s."
% (len(flat_structure), len(flat_sequence), structure, flat_sequence)
)
return sequence_fn(structure, packed)
def _tf_data_pack_sequence_as(structure, flat_sequence):
"""Returns a given flattened sequence packed into a nest.
If `structure` is a scalar, `flat_sequence` must be a single-element list;
in this case the return value is `flat_sequence[0]`.
Args:
structure: tuple or list constructed of scalars and/or other tuples/lists,
or a scalar. Note: numpy arrays are considered scalars.
flat_sequence: flat sequence to pack.
Returns:
packed: `flat_sequence` converted to have the same recursive structure as
`structure`.
Raises:
ValueError: If nest and structure have different element counts.
"""
if not (_tf_data_is_nested(flat_sequence) or isinstance(flat_sequence, list)):
raise TypeError(
"Argument `flat_sequence` must be a sequence. Got "
f"'{type(flat_sequence).__name__}'."
)
if not _tf_data_is_nested(structure):
if len(flat_sequence) != 1:
raise ValueError(
"Argument `structure` is a scalar but "
f"`len(flat_sequence)`={len(flat_sequence)} > 1"
)
return flat_sequence[0]
flat_structure = _tf_data_flatten(structure)
if len(flat_structure) != len(flat_sequence):
raise ValueError(
"Could not pack sequence. Argument `structure` had "
f"{len(flat_structure)} elements, but argument `flat_sequence` had "
f"{len(flat_sequence)} elements. Received structure: "
f"{structure}, flat_sequence: {flat_sequence}."
)
_, packed = _tf_data_packed_nest_with_indices(structure, flat_sequence, 0)
return sequence_like(structure, packed) # pylint: disable=protected-access
def map_structure(modality, func, *structure, **kwargs):
"""Creates a new structure by applying `func` to each atom in `structure`.
- For Modality.CORE: Refer to
[tf.nest](https://www.tensorflow.org/api_docs/python/tf/nest)
for the definition of a structure.
Applies `func(x[0], x[1], ...)` where x[i] enumerates all atoms in
`structure[i]`. All items in `structure` must have the same arity,
and the return value will contain results with the same structure layout.
Examples:
* A single Python dict:
>>> a = {"hello": 24, "world": 76}
>>> tf.nest.map_structure(lambda p: p * 2, a)
{'hello': 48, 'world': 152}
* Multiple Python dictionaries:
>>> d1 = {"hello": 24, "world": 76}
>>> d2 = {"hello": 36, "world": 14}
>>> tf.nest.map_structure(lambda p1, p2: p1 + p2, d1, d2)
{'hello': 60, 'world': 90}
* A single Python list:
>>> a = [24, 76, "ab"]
>>> tf.nest.map_structure(lambda p: p * 2, a)
[48, 152, 'abab']
* Scalars:
>>> tf.nest.map_structure(lambda x, y: x + y, 3, 4)
7
* Empty structures:
>>> tf.nest.map_structure(lambda x: x + 1, ())
()
* Check the types of iterables:
>>> s1 = (((1, 2), 3), 4, (5, 6))