-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsparseCountSparseOutput_fuzz.py
67 lines (58 loc) · 2.33 KB
/
sparseCountSparseOutput_fuzz.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""This is a Python API fuzzer for tf.raw_ops.SparseCountSparseOutput."""
import atheris
with atheris.instrument_imports():
import sys
from python_fuzzing import FuzzingHelper
import tensorflow as tf
@atheris.instrument_func
def TestOneInput(input_bytes):
"""Test randomized integer fuzzing input for tf.raw_ops.SparseCountSparseOutput."""
fh = FuzzingHelper(input_bytes)
shape1 = fh.get_int_list(min_length=0, max_length=8, min_int=0, max_int=8)
shape2 = fh.get_int_list(min_length=0, max_length=8, min_int=0, max_int=8)
shape3 = fh.get_int_list(min_length=0, max_length=8, min_int=0, max_int=8)
shape4 = fh.get_int_list(min_length=0, max_length=8, min_int=0, max_int=8)
seed = fh.get_int()
indices = tf.random.uniform(
shape=shape1, minval=0, maxval=1000, dtype=tf.int64, seed=seed)
values = tf.random.uniform(
shape=shape2, minval=0, maxval=1000, dtype=tf.int64, seed=seed)
dense_shape = tf.random.uniform(
shape=shape3, minval=0, maxval=1000, dtype=tf.int64, seed=seed)
weights = tf.random.uniform(
shape=shape4, minval=0, maxval=1000, dtype=tf.int64, seed=seed)
binary_output = fh.get_bool()
minlength = fh.get_int()
maxlength = fh.get_int()
name = fh.get_string()
try:
_, _, _, = tf.raw_ops.SparseCountSparseOutput(
indices=indices,
values=values,
dense_shape=dense_shape,
weights=weights,
binary_output=binary_output,
minlength=minlength,
maxlength=maxlength,
name=name)
except tf.errors.InvalidArgumentError:
pass
def main():
atheris.Setup(sys.argv, TestOneInput, enable_python_coverage=True)
atheris.Fuzz()
if __name__ == "__main__":
main()