-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathChineseRemainderTheorem.java
44 lines (37 loc) · 1.22 KB
/
ChineseRemainderTheorem.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
// Finds a unique solution that satifies a set of congruences, given that the moduli of the congruences are co-prime
import java.util.*;
class ChineseRemainderTheorem{
static int CRT(int[] a, int[] m, int M, int n){
int x = 0;
for(int i = 0; i< n; i++){
int Mi = M/m[i];
int y = 0;
for(int j = 1; j < m[i]; j++){
if((Mi*j)%m[i] == 1){
y = j;
break;
}
}
x = x + (a[i]*Mi*y);
}
return x%M;
}
public static void main(String[] args){
Scanner input = new Scanner(System.in);
System.out.println("Enter the number of congruences: ");
int n = input.nextInt(); //No.of Congruences
int[] a = new int[n]; //Remainders
System.out.println("Enter the remainders: ");
for(int i = 0; i < n; i++){
a[i] = input.nextInt();
}
int[] m = new int[n]; //Moduli
int M = 1;
System.out.println("Enter the Moduli(s): ");
for(int i = 0; i < n; i++){
m[i] = input.nextInt();
M = M*m[i];
}
System.out.println("x = " + CRT(a, m, M, n));
}
}