-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathPrimeNumberUsingSegmentedSieve.java
75 lines (61 loc) · 2.09 KB
/
PrimeNumberUsingSegmentedSieve.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Scanner;
class SegmentedSieve {
// Function to find all primes up to √n using Simple Sieve
static ArrayList<Integer> simpleSieve(int limit) {
boolean[] isPrime = new boolean[limit + 1];
Arrays.fill(isPrime, true);
ArrayList<Integer> primes = new ArrayList<>();
for (int p = 2; p * p <= limit; p++) {
if (isPrime[p]) {
for (int i = p * p; i <= limit; i += p) {
isPrime[i] = false;
}
}
}
for (int p = 2; p <= limit; p++) {
if (isPrime[p]) {
primes.add(p);
}
}
return primes;
}
// Function to segment the range and mark non-primes
static void segmentedSieve(int n) {
int limit = (int) Math.sqrt(n);
ArrayList<Integer> primes = simpleSieve(limit);
// Print primes from the simple sieve
for (int prime : primes) {
System.out.print(prime + " ");
}
int low = limit + 1;
int high = 2 * limit;
while (low <= n) {
if (high > n) {
high = n;
}
boolean[] mark = new boolean[high - low + 1];
Arrays.fill(mark, true);
for (int prime : primes) {
int lowLim = Math.max(prime * prime, low + (prime - low % prime) % prime);
for (int j = lowLim; j <= high; j += prime) {
mark[j - low] = false;
}
}
for (int i = low; i <= high; i++) {
if (mark[i - low]) {
System.out.print(i + " ");
}
}
low = low + limit;
high = high + limit;
}
}
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
System.out.println("Enter num upti which primes are to be found: ");
int n = input.nextInt();
segmentedSieve(n);
}
}