-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmarkov_chain.py
212 lines (178 loc) · 6.27 KB
/
markov_chain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
from numpy import matmul, array, float
from numpy.linalg import inv, pinv
transition_probability_matrix = [
[0, 2, 1, 1, 0],
[1, 1, 0, 2, 1],
[0, 3, 2, 0, 0],
[0, 0, 0, 0, 0],
[2, 0, 1, 3, 0]
]
# [
# [0, 1, 0, 0, 0, 1],
# [4, 0, 0, 3, 2, 0],
# [0, 0, 0, 0, 0, 0],
# [0, 0, 0, 0, 0, 0],
# [0, 0, 0, 0, 0, 0],
# [0, 0, 0, 0, 0, 0]
# ]
# [
# [0, 2, 1, 0, 0],
# [0, 0, 0, 3, 4],
# [0, 0, 0, 0, 0],
# [0, 0, 0, 0, 0],
# [0, 0, 0, 0, 0]
# ]
transition_probability_matrix = array(transition_probability_matrix, float)
def transition_prob_matrix(mat):
pass
def transfer_to_markov_chain(transition_probab_mat):
for i in range(len(transition_probab_mat)):
x = sum(transition_probab_mat[i])
if x:
for j in range(len(transition_probab_mat)): transition_probab_mat[i][j] /= x
else:
transition_probab_mat[i][i] = 1
def get_stationary_matrix(mat):
# [a, b] . [[.1, .9], [.3, .7]] = [a, b]
#
# .1 a + .3 b = a
# .9 a + .7 b = b
#
# a + b = 1
#
# .1 a + .3 (1-b) = a
# .3 (1-b) = .9 a
# 1 - b = 3 a
# 3a + b = 1
#
# a = 0
# b = 1
#
pass
print('A:')
for x in transition_probability_matrix:
print(x)
absorbing_states = [i for i in range(len(transition_probability_matrix)) if not sum(transition_probability_matrix[i])]
transfer_to_markov_chain(transition_probability_matrix)
print('\nA Markov Chain:')
for x in transition_probability_matrix:
print(x)
def to_standard_form(abs_mat, absorbing_states):
non_abs_states = [i for i in range(len(abs_mat)) if i not in absorbing_states]
standard_mat = array([[0] * len(abs_mat) for _ in range(len(abs_mat))], dtype=float)
R = [[None] * len(absorbing_states) for _ in range(len(non_abs_states))]
Q = [[None] * len(non_abs_states) for _ in range(len(non_abs_states))]
for i in range(len(absorbing_states)):
standard_mat[i][i] = 1
for i in range(len(non_abs_states)):
for j in range(len(absorbing_states)):
standard_mat[i + len(absorbing_states)][j] = abs_mat[non_abs_states[i]][absorbing_states[j]]
R[i][j] = abs_mat[non_abs_states[i]][absorbing_states[j]]
for j in range(len(non_abs_states)):
standard_mat[i + len(absorbing_states)][j + len(absorbing_states)] = abs_mat[non_abs_states[i]][
non_abs_states[j]]
Q[i][j] = abs_mat[non_abs_states[i]][non_abs_states[j]]
return standard_mat, R, Q
standard_absorbing_matrix, R, Q = to_standard_form(transition_probability_matrix, absorbing_states)
print('\nStandard Absorbing Matrix:')
for x in standard_absorbing_matrix:
print(x)
print(R)
# print(Q)
# transfer_to_markov_chain(standard_absorbing_matrix)
# print(standard_absorbing_matrix)
#
# standard form, P = [[I 0][R Q]]
# limiting matrix Pbar = [[I 0] [FR 0]]
# fundamental matrix for P, F = (I-Q)^-1
#
def get_fundamental_matrix(Q):
F = Q.copy()
# print(F)
for i in range(len(F)):
F[i][i] -= 1
for j in range(len(F)): F[i][j] *= -1
# print('\nI-Q:')
# for i in F:
# print(i)
try:
return inv(F)
except:
return pinv(F)
def get_limiting_matrix_for_absorbing_markov_chain(P, Q, R):
F = get_fundamental_matrix(array(Q))
print('\nF:')
for i in F:
print(i)
F = matmul(F, R)
print('\nFR:')
for i in F:
print(i)
lenI = len(P) - len(R)
Pbar = P.copy()
for i in range(len(R)):
for j in range(len(R[0])):
Pbar[i + lenI][j] = F[i][j]
for j in range(len(Q[0])):
Pbar[i + lenI][j + len(R[0])] = 0
return Pbar
# transfer_to_markov_chain(standard_absorbing_matrix)
# print(standard_absorbing_matrix)
limiting_matrix = get_limiting_matrix_for_absorbing_markov_chain(standard_absorbing_matrix, Q, R)
print('\nLimiting matrix:')
for i in limiting_matrix:
print(i)
def transfer_to_markov_chain(transition_probab_mat):
for i in range(len(transition_probab_mat)):
x = sum(transition_probab_mat[i])
if x:
for j in range(len(transition_probab_mat)): transition_probab_mat[i][j] /= x
else:
transition_probab_mat[i][i] = 1
def get_fundamental_matrix(Q):
F = Q.copy()
for i in range(len(F)):
F[i][i] -= 1
for j in range(len(F)):
F[i][j] *= -1
try:
return inv(F)
except:
return pinv(F)
def test(m):
m = array(m, float)
absorbing_states = [i for i in range(len(m)) if not sum(m[i])]
if len(absorbing_states) == len(m):
return [1] + [0]*(len(m)-1) + [1]
transfer_to_markov_chain(m)
non_abs_states = [i for i in range(len(m)) if i not in absorbing_states]
R = [[None] * len(absorbing_states) for _ in range(len(non_abs_states))]
Q = [[None] * len(non_abs_states) for _ in range(len(non_abs_states))]
for i in range(len(non_abs_states)):
for j in range(len(absorbing_states)):
R[i][j] = m[non_abs_states[i]][absorbing_states[j]]
for j in range(len(non_abs_states)):
Q[i][j] = m[non_abs_states[i]][non_abs_states[j]]
F = get_fundamental_matrix(array(Q))
# print(F)
F = matmul(F, R)
F = F[0]
# getting proper fractions from the results as the values are float and below code gives the proper numerators and denominator
# if you need float values, then just add 'return F' and delete the below for loop
for i in range(1, 101):
poss = True
temp = [round(f * i, 6) for f in F]
for t in temp:
if t != int(t):
poss = False
break
if poss:
return [int(t) for t in temp], [int(sum(temp))] # list of numerators, common denominator
# test([[0, 2, 1, 0, 0], [0, 0, 0, 3, 4], [0, 0, 0, 0, 0], [0, 0, 0, 0,0], [0, 0, 0, 0, 0]])
# test([[0, 1, 0, 0, 0, 1], [4, 0, 0, 3, 2, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]])
# test([[0, 2, 1, 1, 0], [1, 1, 0, 2, 1], [0, 3, 2, 0, 0], [0, 0, 0, 0, 0], [2, 0, 1, 3, 0]])
test([
[2, 1, 2],
[0, 1, 0],
[0, 0, 0],
])