-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathHLD_Edeges.java
executable file
·346 lines (310 loc) · 8.91 KB
/
HLD_Edeges.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
/* package joney_000 */
import java.util.*;
import java.lang.*;
import java.io.*;
import java.math.*;
class HLD{
static BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
static BufferedWriter out = new BufferedWriter(new OutputStreamWriter(System.out));
// Base 0 tree
static final int N = 10105 ;
static final int LOGN = 15;
static int root = -1;
static int ptr = 0;
static int chainNo = 0;
static ArrayList adj[] = new ArrayList[N];
static ArrayList cost[] = new ArrayList[N]; // weights on the edges
static ArrayList idx[] = new ArrayList[N];
static {
for(int i = 0; i<N ; i++){
adj[i] = new ArrayList();
cost[i] = new ArrayList();
idx[i] = new ArrayList();
}
}
static int baseArray[] = new int[N];
static int chainIndex[] = new int[N];
static int chainHead[] = new int[N];
static int posInBase[] = new int[N];
static int depth[] = new int[N]; // depth of node i in dfs
static int f[][] = new int[LOGN][N]; //father array
static int otherEnd[] = new int[N];
static int subsize[] = new int[N]; //subtree size of node i
static int st[] = new int[6*N]; // The Segment Tree
static int qt[] = new int[6*N]; // The query Tree : Au Arrays for computiong / buffer for answering query
/*
* make_tree:
* Used to construct the segment tree. It uses the baseArray for construction
*/
static void make_tree(int cur, int s, int e) {
if(s == e-1) {
st[cur] = baseArray[s];
return;
}
int c1 = (cur<<1); //left child
int c2 = c1 | 1 ; //right child
int m = (s+e)>>1;
make_tree(c1, s, m);
make_tree(c2, m, e);
st[cur] = st[c1] > st[c2] ? st[c1] : st[c2]; // logic for building seg tree
}
/*
* update_tree:
* Point update. Update a single element of the segment tree.
*/
static void update_tree(int cur, int s, int e, int x, int val) {
if(s > x || e <= x) return;
if(s == x && s == e-1) {
st[cur] = val;
return;
}
int c1 = (cur<<1);
int c2 = c1 | 1 ;
int m = (s+e)>>1;
update_tree(c1, s, m, x, val);
update_tree(c2, m, e, x, val);
st[cur] = st[c1] > st[c2] ? st[c1] : st[c2];
}
/*
* query_tree:
* Given S and E, it will return the maximum value in the range [S,E)
*/
static void query_tree(int cur, int s, int e, int S, int E) {
if(s >= E || e <= S) {
qt[cur] = -1; //invalid condition
return;
}
if(s >= S && e <= E) {
qt[cur] = st[cur];
return;
}
int c1 = (cur<<1);
int c2 = c1 | 1;
int m = (s+e)>>1;
query_tree(c1, s, m, S, E);
query_tree(c2, m, e, S, E);
qt[cur] = qt[c1] > qt[c2] ? qt[c1] : qt[c2];
}
/*
* query_up:
* It takes two nodes u and v, condition is that v is an ancestor of u
* We query the chain in which u is present till chain head, then move to next chain up
* We do that way till u and v are in the same chain, we query for that part of chain and break
*/
static int query_up(int u, int v) {
if(u == v) return 0; // Trivial [no weight at nodes]
int uchain = 0; int vchain = chainIndex[v];int ans = -1;
// uchain and vchain are chain numbers of u and v
while(true) {
uchain = chainIndex[u];
if(uchain == vchain) {
// Both u and v are in the same chain, so we need to query from u to v, update answer and break.
// We break because we came from u up till v, we are done
if(u==v) break;
query_tree(1, 0, ptr, posInBase[v]+1, posInBase[u]+1);
// Above is call to segment tree query function
if(qt[1] > ans) ans = qt[1]; // Update answer
break;
}
query_tree(1, 0, ptr, posInBase[chainHead[uchain]], posInBase[u]+1);
// Above is call to segment tree query function. We do from chainHead of u till u. That is the whole chain from
// start till head. We then update the answer
if(qt[1] > ans) ans = qt[1];
u = chainHead[uchain]; // move u to u's chainHead
u = f[0][u]; //Then move to its parent, that means we changed chains
}
return ans;
}
/*
* LCA: Sparce Table
* Takes two nodes u, v and returns Lowest Common Ancestor of u, v
*/
static int LCA(int u, int v) {
if(depth[u] < depth[v]) {int temp = u; u = v; v = temp; /*swap*/ }
int diff = depth[u] - depth[v];
for(int i=0; i<LOGN; i++) if( ((diff>>i)&1) ==1) u = f[i][u];
if(u == v) return u;
for(int i=LOGN-1; i>=0; i--) if(f[i][u] != f[i][v]) {
u = f[i][u];
v = f[i][v];
}
return f[0][u];
}
/*
* We have a query from u to v, we break it into two queries, u to LCA(u,v) and LCA(u,v) to v
*/
// Main HLD Query
static void query(int u, int v) throws IOException{
int lca = LCA(u, v);
int ans = query_up(u, lca); // One part of path
int temp = query_up(v, lca); // another part of path
if(temp > ans) ans = temp; // take the maximum of both paths
out.write(""+ans+"\n");
// out.flush();
}
/*
* change:
* We just need to find its position in segment tree and update it
*/
static void change(int i, int val) {
int u = otherEnd[i];
update_tree(1, 0, ptr, posInBase[u], val);
}
/*
* dfs used to set parent of a node, depth of a node, subtree size of a node
*/
static void dfs(int cur, int prev, int _depth) {
f[0][cur] = prev;
depth[cur] = _depth;
subsize[cur] = 1;
for(int i=0; i< adj[cur].size(); i++)
if((int)adj[cur].get(i) != prev) {
otherEnd[(int)idx[cur].get(i)] = (int)adj[cur].get(i);
dfs((int)adj[cur].get(i), cur, _depth+1);
subsize[cur] += (int)subsize[(int)adj[cur].get(i)];
}
}
/*
* Actual HL-Decomposition part
* Initially all entries of chainHead[] are set to -1.
* So when ever a new chain is started, chain head is correctly assigned.
* As we add a new node to chain, we will note its position in the baseArray.
* In the first for loop we find the child node which has maximum sub-tree size.
* The following if condition is failed for leaf nodes.
* When the if condition passes, we expand the chain to special child.
* In the second for loop we recursively call the function on all normal nodes.
* chainNo++ ensures that we are creating a new chain for each normal child.
*/
static void HLD(int curNode, int _cost, int prev) {
if(chainHead[chainNo] == -1) {
chainHead[chainNo] = curNode; // Assign chain head
}
chainIndex[curNode] = chainNo;
posInBase[curNode] = ptr; // Position of this node in baseArray which we will use in Segtree
baseArray[ptr++] = _cost; // baseArray contains the weights in the path / chain
int sc = -1, ncost = 0;
// Loop to find special child
for(int i=0; i<adj[curNode].size(); i++) if((int)adj[curNode].get(i) != prev) {
if(sc == -1 || subsize[sc] < (int)subsize[(int)adj[curNode].get(i)]) {
sc = (int)adj[curNode].get(i);
ncost = (int)cost[curNode].get(i);
}
}
if(sc != -1) {
// Expand the chain
HLD(sc, ncost, curNode);
}
for(int i=0; i<adj[curNode].size(); i++) if((int)adj[curNode].get(i) != prev) {
if(sc != (int)adj[curNode].get(i)) {
// New chains at each normal node
chainNo++;
HLD((int)adj[curNode].get(i), (int)cost[curNode].get(i), curNode);
}
}
}
static void make_sparseTable(int n)throws Exception{
// Below Dynamic programming code is ST for LCA.
for(int i=1; i<LOGN; i++)
for(int j=0; j<n; j++)
if(f[i-1][j] != -1)
f[i][j] = f[i-1][f[i-1][j]];
}
public static void main(String[] args)throws Exception{
Scanner sc = new Scanner(System.in);
int tests = sc.nextInt();//Integer.parseInt(br.readLine());
for(int t = 1 ; t <= tests ; t++){
ptr = 0;
int n = sc.nextInt();//Integer.parseInt(br.readLine());
for(int i=0; i<n; i++) {
adj[i].clear();// = new ArrayList() ;
cost[i].clear();// = new ArrayList();
idx[i].clear();// = new ArrayList();
chainHead[i] = -1;
for(int j=0; j<LOGN; j++) f[j][i] = -1;
}
for(int i=1; i<n; i++) {
// String[] s = br.readLine().split(" ");
int u = sc.nextInt() -1 ;//Integer.parseInt(s[0]) - 1 ;
int v = sc.nextInt() -1 ;//Integer.parseInt(s[1]) - 1 ;
int c = sc.nextInt();//Integer.parseInt(s[2]) ;
if(root==0)root = u;
adj[u].add(v);
cost[u].add(c);
idx[u].add(i-1);
adj[v].add(u);
cost[v].add(c);
idx[v].add(i-1);
}
chainNo = 0;
dfs(root, -1 , 0); // We set up subsize, depth and parent for each node before sparse table
HLD(root, -1, -1); // We decomposed the tree and created baseArray
make_tree(1, 0, ptr); // We use baseArray and construct the needed segment tree
make_sparseTable(n); // sparse table
while(true) {
String s = sc.next();
if(s.charAt(0)=='D') {
break;
}
int a = sc.nextInt();//Integer.parseInt(s[1]);
int b = sc.nextInt();//Integer.parseInt(s[2]) ;
if(s.charAt(0)=='Q') {
query(a-1, b-1);//u , v
} else {
change(a-1, b); // update seg tree : node update , update the weight of the node = maxdepth(u,v);
}
/*
INPT :
1
15
1 2 1
1 3 1
2 4 2
2 5 3
3 6 2
3 7 6
3 8 5
5 12 1
7 11 2
8 9 1
8 10 8
12 13 2
12 14 3
12 15 1
QUERY 1 12
QUERY 12 7
QUERY 5 8
QUERY 8 15
QUERY 8 9
QUERY 12 2
QUERY 6 10
CHANGE 8 8
CHANGE 2 8
QUERY 1 12
QUERY 12 7
QUERY 5 8
QUERY 8 15
QUERY 8 9
QUERY 12 2
QUERY 6 10
DONE
OPT :
3
6
5
5
1
3
8
8
8
8
8
1
8
8
*/
}
}
out.flush();
}
}