forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathminimum_spanning_tree_kruskal2.py
121 lines (101 loc) · 4 KB
/
minimum_spanning_tree_kruskal2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
from __future__ import annotations
from typing import Generic, TypeVar
T = TypeVar("T")
class DisjointSetTreeNode(Generic[T]):
# Disjoint Set Node to store the parent and rank
def __init__(self, data: T) -> None:
self.data = data
self.parent = self
self.rank = 0
class DisjointSetTree(Generic[T]):
# Disjoint Set DataStructure
def __init__(self) -> None:
# map from node name to the node object
self.map: dict[T, DisjointSetTreeNode[T]] = {}
def make_set(self, data: T) -> None:
# create a new set with x as its member
self.map[data] = DisjointSetTreeNode(data)
def find_set(self, data: T) -> DisjointSetTreeNode[T]:
# find the set x belongs to (with path-compression)
elem_ref = self.map[data]
if elem_ref != elem_ref.parent:
elem_ref.parent = self.find_set(elem_ref.parent.data)
return elem_ref.parent
def link(
self, node1: DisjointSetTreeNode[T], node2: DisjointSetTreeNode[T]
) -> None:
# helper function for union operation
if node1.rank > node2.rank:
node2.parent = node1
else:
node1.parent = node2
if node1.rank == node2.rank:
node2.rank += 1
def union(self, data1: T, data2: T) -> None:
# merge 2 disjoint sets
self.link(self.find_set(data1), self.find_set(data2))
class GraphUndirectedWeighted(Generic[T]):
def __init__(self) -> None:
# connections: map from the node to the neighbouring nodes (with weights)
self.connections: dict[T, dict[T, int]] = {}
def add_node(self, node: T) -> None:
# add a node ONLY if its not present in the graph
if node not in self.connections:
self.connections[node] = {}
def add_edge(self, node1: T, node2: T, weight: int) -> None:
# add an edge with the given weight
self.add_node(node1)
self.add_node(node2)
self.connections[node1][node2] = weight
self.connections[node2][node1] = weight
def kruskal(self) -> GraphUndirectedWeighted[T]:
# Kruskal's Algorithm to generate a Minimum Spanning Tree (MST) of a graph
"""
Details: https://en.wikipedia.org/wiki/Kruskal%27s_algorithm
Example:
>>> g1 = GraphUndirectedWeighted[int]()
>>> g1.add_edge(1, 2, 1)
>>> g1.add_edge(2, 3, 2)
>>> g1.add_edge(3, 4, 1)
>>> g1.add_edge(3, 5, 100) # Removed in MST
>>> g1.add_edge(4, 5, 5)
>>> assert 5 in g1.connections[3]
>>> mst = g1.kruskal()
>>> assert 5 not in mst.connections[3]
>>> g2 = GraphUndirectedWeighted[str]()
>>> g2.add_edge('A', 'B', 1)
>>> g2.add_edge('B', 'C', 2)
>>> g2.add_edge('C', 'D', 1)
>>> g2.add_edge('C', 'E', 100) # Removed in MST
>>> g2.add_edge('D', 'E', 5)
>>> assert 'E' in g2.connections["C"]
>>> mst = g2.kruskal()
>>> assert 'E' not in mst.connections['C']
"""
# getting the edges in ascending order of weights
edges = []
seen = set()
for start in self.connections:
for end in self.connections[start]:
if (start, end) not in seen:
seen.add((end, start))
edges.append((start, end, self.connections[start][end]))
edges.sort(key=lambda x: x[2])
# creating the disjoint set
disjoint_set = DisjointSetTree[T]()
for node in self.connections:
disjoint_set.make_set(node)
# MST generation
num_edges = 0
index = 0
graph = GraphUndirectedWeighted[T]()
while num_edges < len(self.connections) - 1:
u, v, w = edges[index]
index += 1
parent_u = disjoint_set.find_set(u)
parent_v = disjoint_set.find_set(v)
if parent_u != parent_v:
num_edges += 1
graph.add_edge(u, v, w)
disjoint_set.union(u, v)
return graph