-
-
Notifications
You must be signed in to change notification settings - Fork 35.7k
/
Copy pathsurfaceNet.js
201 lines (170 loc) · 5.42 KB
/
surfaceNet.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
/**
* SurfaceNets in JavaScript
*
* Written by Mikola Lysenko (C) 2012
*
* MIT License
*
* Based on: S.F. Gibson, 'Constrained Elastic Surface Nets'. (1998) MERL Tech Report.
* from https://github.com/mikolalysenko/isosurface/tree/master
*
*/
let surfaceNet = ( dims, potential, bounds ) => {
//Precompute edge table, like Paul Bourke does.
// This saves a bit of time when computing the centroid of each boundary cell
var cube_edges = new Int32Array(24) , edge_table = new Int32Array(256);
(function() {
//Initialize the cube_edges table
// This is just the vertex number of each cube
var k = 0;
for(var i=0; i<8; ++i) {
for(var j=1; j<=4; j<<=1) {
var p = i^j;
if(i <= p) {
cube_edges[k++] = i;
cube_edges[k++] = p;
}
}
}
//Initialize the intersection table.
// This is a 2^(cube configuration) -> 2^(edge configuration) map
// There is one entry for each possible cube configuration, and the output is a 12-bit vector enumerating all edges crossing the 0-level.
for(var i=0; i<256; ++i) {
var em = 0;
for(var j=0; j<24; j+=2) {
var a = !!(i & (1<<cube_edges[j]))
, b = !!(i & (1<<cube_edges[j+1]));
em |= a !== b ? (1 << (j >> 1)) : 0;
}
edge_table[i] = em;
}
})();
//Internal buffer, this may get resized at run time
var buffer = new Array(4096);
(function() {
for(var i=0; i<buffer.length; ++i) {
buffer[i] = 0;
}
})();
if(!bounds) {
bounds = [[0,0,0],dims];
}
var scale = [0,0,0];
var shift = [0,0,0];
for(var i=0; i<3; ++i) {
scale[i] = (bounds[1][i] - bounds[0][i]) / dims[i];
shift[i] = bounds[0][i];
}
var vertices = []
, faces = []
, n = 0
, x = [0, 0, 0]
, R = [1, (dims[0]+1), (dims[0]+1)*(dims[1]+1)]
, grid = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
, buf_no = 1;
//Resize buffer if necessary
if(R[2] * 2 > buffer.length) {
var ol = buffer.length;
buffer.length = R[2] * 2;
while(ol < buffer.length) {
buffer[ol++] = 0;
}
}
//March over the voxel grid
for(x[2]=0; x[2]<dims[2]-1; ++x[2], n+=dims[0], buf_no ^= 1, R[2]=-R[2]) {
//m is the pointer into the buffer we are going to use.
//This is slightly obtuse because javascript does not have good support for packed data structures, so we must use typed arrays :(
//The contents of the buffer will be the indices of the vertices on the previous x/y slice of the volume
var m = 1 + (dims[0]+1) * (1 + buf_no * (dims[1]+1));
for(x[1]=0; x[1]<dims[1]-1; ++x[1], ++n, m+=2)
for(x[0]=0; x[0]<dims[0]-1; ++x[0], ++n, ++m) {
//Read in 8 field values around this vertex and store them in an array
//Also calculate 8-bit mask, like in marching cubes, so we can speed up sign checks later
var mask = 0, g = 0;
for(var k=0; k<2; ++k)
for(var j=0; j<2; ++j)
for(var i=0; i<2; ++i, ++g) {
var p = potential(
scale[0]*(x[0]+i)+shift[0],
scale[1]*(x[1]+j)+shift[1],
scale[2]*(x[2]+k)+shift[2]);
grid[g] = p;
mask |= (p < 0) ? (1<<g) : 0;
}
//Check for early termination if cell does not intersect boundary
if(mask === 0 || mask === 0xff) {
continue;
}
//Sum up edge intersections
var edge_mask = edge_table[mask]
, v = [0.0,0.0,0.0]
, e_count = 0;
//For every edge of the cube...
for(var i=0; i<12; ++i) {
//Use edge mask to check if it is crossed
if(!(edge_mask & (1<<i))) {
continue;
}
//If it did, increment number of edge crossings
++e_count;
//Now find the point of intersection
var e0 = cube_edges[ i<<1 ] //Unpack vertices
, e1 = cube_edges[(i<<1)+1]
, g0 = grid[e0] //Unpack grid values
, g1 = grid[e1]
, t = g0 - g1; //Compute point of intersection
if(Math.abs(t) > 1e-6) {
t = g0 / t;
} else {
continue;
}
//Interpolate vertices and add up intersections (this can be done without multiplying)
for(var j=0, k=1; j<3; ++j, k<<=1) {
var a = e0 & k
, b = e1 & k;
if(a !== b) {
v[j] += a ? 1.0 - t : t;
} else {
v[j] += a ? 1.0 : 0;
}
}
}
//Now we just average the edge intersections and add them to coordinate
var s = 1.0 / e_count;
for(var i=0; i<3; ++i) {
v[i] = scale[i] * (x[i] + s * v[i]) + shift[i];
}
//Add vertex to buffer, store pointer to vertex index in buffer
buffer[m] = vertices.length;
vertices.push(v);
//Now we need to add faces together, to do this we just loop over 3 basis components
for(var i=0; i<3; ++i) {
//The first three entries of the edge_mask count the crossings along the edge
if(!(edge_mask & (1<<i)) ) {
continue;
}
// i = axes we are point along. iu, iv = orthogonal axes
var iu = (i+1)%3
, iv = (i+2)%3;
//If we are on a boundary, skip it
if(x[iu] === 0 || x[iv] === 0) {
continue;
}
//Otherwise, look up adjacent edges in buffer
var du = R[iu]
, dv = R[iv];
//Remember to flip orientation depending on the sign of the corner.
if(mask & 1) {
faces.push([buffer[m], buffer[m-du], buffer[m-dv]]);
faces.push([buffer[m-dv], buffer[m-du], buffer[m-du-dv]]);
} else {
faces.push([buffer[m], buffer[m-dv], buffer[m-du]]);
faces.push([buffer[m-du], buffer[m-dv], buffer[m-du-dv]]);
}
}
}
}
//All done! Return the result
return { positions: vertices, cells: faces };
}
export { surfaceNet }