-
-
Notifications
You must be signed in to change notification settings - Fork 35.7k
/
Copy pathRefractor.js
389 lines (265 loc) · 9.94 KB
/
Refractor.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
import {
Color,
Matrix4,
Mesh,
PerspectiveCamera,
Plane,
Quaternion,
ShaderMaterial,
UniformsUtils,
Vector3,
Vector4,
WebGLRenderTarget,
HalfFloatType
} from 'three';
/**
* Can be used to create a flat, refractive surface like for special
* windows or water effects.
*
* Note that this class can only be used with {@link WebGLRenderer}.
* When using {@link WebGPURenderer}, use {@link viewportSharedTexture}.
*
* ```js
* const geometry = new THREE.PlaneGeometry( 100, 100 );
*
* const refractor = new Refractor( refractorGeometry, {
* color: 0xcbcbcb,
* textureWidth: 1024,
* textureHeight: 1024
* } );
*
* scene.add( refractor );
* ```
*
* @augments Mesh
* @three_import import { Refractor } from 'three/addons/objects/Refractor.js';
*/
class Refractor extends Mesh {
/**
* Constructs a new refractor.
*
* @param {BufferGeometry} geometry - The refractor's geometry.
* @param {Refractor~Options} [options] - The configuration options.
*/
constructor( geometry, options = {} ) {
super( geometry );
/**
* This flag can be used for type testing.
*
* @type {boolean}
* @readonly
* @default true
*/
this.isRefractor = true;
this.type = 'Refractor';
/**
* The reflector's virtual camera.
*
* @type {PerspectiveCamera}
*/
this.camera = new PerspectiveCamera();
const scope = this;
const color = ( options.color !== undefined ) ? new Color( options.color ) : new Color( 0x7F7F7F );
const textureWidth = options.textureWidth || 512;
const textureHeight = options.textureHeight || 512;
const clipBias = options.clipBias || 0;
const shader = options.shader || Refractor.RefractorShader;
const multisample = ( options.multisample !== undefined ) ? options.multisample : 4;
//
const virtualCamera = this.camera;
virtualCamera.matrixAutoUpdate = false;
virtualCamera.userData.refractor = true;
//
const refractorPlane = new Plane();
const textureMatrix = new Matrix4();
// render target
const renderTarget = new WebGLRenderTarget( textureWidth, textureHeight, { samples: multisample, type: HalfFloatType } );
// material
this.material = new ShaderMaterial( {
name: ( shader.name !== undefined ) ? shader.name : 'unspecified',
uniforms: UniformsUtils.clone( shader.uniforms ),
vertexShader: shader.vertexShader,
fragmentShader: shader.fragmentShader,
transparent: true // ensures, refractors are drawn from farthest to closest
} );
this.material.uniforms[ 'color' ].value = color;
this.material.uniforms[ 'tDiffuse' ].value = renderTarget.texture;
this.material.uniforms[ 'textureMatrix' ].value = textureMatrix;
// functions
const visible = ( function () {
const refractorWorldPosition = new Vector3();
const cameraWorldPosition = new Vector3();
const rotationMatrix = new Matrix4();
const view = new Vector3();
const normal = new Vector3();
return function visible( camera ) {
refractorWorldPosition.setFromMatrixPosition( scope.matrixWorld );
cameraWorldPosition.setFromMatrixPosition( camera.matrixWorld );
view.subVectors( refractorWorldPosition, cameraWorldPosition );
rotationMatrix.extractRotation( scope.matrixWorld );
normal.set( 0, 0, 1 );
normal.applyMatrix4( rotationMatrix );
return view.dot( normal ) < 0;
};
} )();
const updateRefractorPlane = ( function () {
const normal = new Vector3();
const position = new Vector3();
const quaternion = new Quaternion();
const scale = new Vector3();
return function updateRefractorPlane() {
scope.matrixWorld.decompose( position, quaternion, scale );
normal.set( 0, 0, 1 ).applyQuaternion( quaternion ).normalize();
// flip the normal because we want to cull everything above the plane
normal.negate();
refractorPlane.setFromNormalAndCoplanarPoint( normal, position );
};
} )();
const updateVirtualCamera = ( function () {
const clipPlane = new Plane();
const clipVector = new Vector4();
const q = new Vector4();
return function updateVirtualCamera( camera ) {
virtualCamera.matrixWorld.copy( camera.matrixWorld );
virtualCamera.matrixWorldInverse.copy( virtualCamera.matrixWorld ).invert();
virtualCamera.projectionMatrix.copy( camera.projectionMatrix );
virtualCamera.far = camera.far; // used in WebGLBackground
// The following code creates an oblique view frustum for clipping.
// see: Lengyel, Eric. “Oblique View Frustum Depth Projection and Clipping”.
// Journal of Game Development, Vol. 1, No. 2 (2005), Charles River Media, pp. 5–16
clipPlane.copy( refractorPlane );
clipPlane.applyMatrix4( virtualCamera.matrixWorldInverse );
clipVector.set( clipPlane.normal.x, clipPlane.normal.y, clipPlane.normal.z, clipPlane.constant );
// calculate the clip-space corner point opposite the clipping plane and
// transform it into camera space by multiplying it by the inverse of the projection matrix
const projectionMatrix = virtualCamera.projectionMatrix;
q.x = ( Math.sign( clipVector.x ) + projectionMatrix.elements[ 8 ] ) / projectionMatrix.elements[ 0 ];
q.y = ( Math.sign( clipVector.y ) + projectionMatrix.elements[ 9 ] ) / projectionMatrix.elements[ 5 ];
q.z = - 1.0;
q.w = ( 1.0 + projectionMatrix.elements[ 10 ] ) / projectionMatrix.elements[ 14 ];
// calculate the scaled plane vector
clipVector.multiplyScalar( 2.0 / clipVector.dot( q ) );
// replacing the third row of the projection matrix
projectionMatrix.elements[ 2 ] = clipVector.x;
projectionMatrix.elements[ 6 ] = clipVector.y;
projectionMatrix.elements[ 10 ] = clipVector.z + 1.0 - clipBias;
projectionMatrix.elements[ 14 ] = clipVector.w;
};
} )();
// This will update the texture matrix that is used for projective texture mapping in the shader.
// see: http://developer.download.nvidia.com/assets/gamedev/docs/projective_texture_mapping.pdf
function updateTextureMatrix( camera ) {
// this matrix does range mapping to [ 0, 1 ]
textureMatrix.set(
0.5, 0.0, 0.0, 0.5,
0.0, 0.5, 0.0, 0.5,
0.0, 0.0, 0.5, 0.5,
0.0, 0.0, 0.0, 1.0
);
// we use "Object Linear Texgen", so we need to multiply the texture matrix T
// (matrix above) with the projection and view matrix of the virtual camera
// and the model matrix of the refractor
textureMatrix.multiply( camera.projectionMatrix );
textureMatrix.multiply( camera.matrixWorldInverse );
textureMatrix.multiply( scope.matrixWorld );
}
//
function render( renderer, scene, camera ) {
scope.visible = false;
const currentRenderTarget = renderer.getRenderTarget();
const currentXrEnabled = renderer.xr.enabled;
const currentShadowAutoUpdate = renderer.shadowMap.autoUpdate;
renderer.xr.enabled = false; // avoid camera modification
renderer.shadowMap.autoUpdate = false; // avoid re-computing shadows
renderer.setRenderTarget( renderTarget );
if ( renderer.autoClear === false ) renderer.clear();
renderer.render( scene, virtualCamera );
renderer.xr.enabled = currentXrEnabled;
renderer.shadowMap.autoUpdate = currentShadowAutoUpdate;
renderer.setRenderTarget( currentRenderTarget );
// restore viewport
const viewport = camera.viewport;
if ( viewport !== undefined ) {
renderer.state.viewport( viewport );
}
scope.visible = true;
}
//
this.onBeforeRender = function ( renderer, scene, camera ) {
// ensure refractors are rendered only once per frame
if ( camera.userData.refractor === true ) return;
// avoid rendering when the refractor is viewed from behind
if ( ! visible( camera ) === true ) return;
// update
updateRefractorPlane();
updateTextureMatrix( camera );
updateVirtualCamera( camera );
render( renderer, scene, camera );
};
/**
* Returns the reflector's internal render target.
*
* @return {WebGLRenderTarget} The internal render target
*/
this.getRenderTarget = function () {
return renderTarget;
};
/**
* Frees the GPU-related resources allocated by this instance. Call this
* method whenever this instance is no longer used in your app.
*/
this.dispose = function () {
renderTarget.dispose();
scope.material.dispose();
};
}
}
Refractor.RefractorShader = {
name: 'RefractorShader',
uniforms: {
'color': {
value: null
},
'tDiffuse': {
value: null
},
'textureMatrix': {
value: null
}
},
vertexShader: /* glsl */`
uniform mat4 textureMatrix;
varying vec4 vUv;
void main() {
vUv = textureMatrix * vec4( position, 1.0 );
gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
}`,
fragmentShader: /* glsl */`
uniform vec3 color;
uniform sampler2D tDiffuse;
varying vec4 vUv;
float blendOverlay( float base, float blend ) {
return( base < 0.5 ? ( 2.0 * base * blend ) : ( 1.0 - 2.0 * ( 1.0 - base ) * ( 1.0 - blend ) ) );
}
vec3 blendOverlay( vec3 base, vec3 blend ) {
return vec3( blendOverlay( base.r, blend.r ), blendOverlay( base.g, blend.g ), blendOverlay( base.b, blend.b ) );
}
void main() {
vec4 base = texture2DProj( tDiffuse, vUv );
gl_FragColor = vec4( blendOverlay( base.rgb, color ), 1.0 );
#include <tonemapping_fragment>
#include <colorspace_fragment>
}`
};
/**
* Constructor options of `Refractor`.
*
* @typedef {Object} Refractor~Options
* @property {number|Color|string} [color=0x7F7F7F] - The refractor's color.
* @property {number} [textureWidth=512] - The texture width. A higher value results in more clear refractions but is also more expensive.
* @property {number} [textureHeight=512] - The texture height. A higher value results in more clear refractions but is also more expensive.
* @property {number} [clipBias=0] - The clip bias.
* @property {Object} [shader] - Can be used to pass in a custom shader that defines how the refractive view is projected onto the reflector's geometry.
* @property {number} [multisample=4] - How many samples to use for MSAA. `0` disables MSAA.
**/
export { Refractor };