Skip to content

Latest commit

 

History

History
342 lines (229 loc) · 9.27 KB

api_documentation.md

File metadata and controls

342 lines (229 loc) · 9.27 KB

API Documentation

1. Introduction

This document provides comprehensive documentation for the API of the Advanced Image Sensor Interface project (v1.0.1). It covers the MIPI Driver, Signal Processing Pipeline, and Power Management System interfaces.

2. MIPI Driver API

2.1 Class: MIPIDriver

Constructor

MIPIDriver(config: MIPIConfig)
  • config: An instance of MIPIConfig containing the driver configuration.
  • Raises ValueError if any configuration parameter is invalid (e.g., lanes ≤ 0, data_rate ≤ 0, or channel < 0).

Methods

send_data
send_data(data: bytes) -> bool

Sends data over the MIPI interface.

  • data: Bytes to send.
  • Returns: True if successful, False otherwise.
  • Raises ValueError if data is not of type bytes.
receive_data
receive_data(num_bytes: int) -> Optional[bytes]

Receives data from the MIPI interface.

  • num_bytes: Number of bytes to receive.
  • Returns: Received data as bytes, or None if an error occurred.
get_status
get_status() -> Dict[str, Any]

Retrieves the current status of the MIPI driver.

  • Returns: A dictionary containing status information:
    • lanes: Number of MIPI lanes
    • data_rate: Data rate in Gbps per lane
    • channel: MIPI channel number
    • error_rate: Current error rate
    • throughput: Current throughput
    • total_data_sent: Total bytes sent
    • total_time: Total time spent sending data
optimize_performance
optimize_performance() -> None

Optimizes the driver performance for increased data transfer rates. This increases the data rate by 40% and reduces the error rate by 50%.

2.2 Class: MIPIConfig

Constructor

MIPIConfig(lanes: int, data_rate: float, channel: int)
  • lanes: Number of data lanes (1-4).
  • data_rate: Data rate in Gbps per lane.
  • channel: MIPI channel number.

3. Signal Processing API

3.1 Class: SignalProcessor

Constructor

SignalProcessor(config: SignalConfig)
  • config: An instance of SignalConfig containing the processor configuration.

Methods

process_frame
process_frame(frame: np.ndarray) -> np.ndarray

Processes a single frame of image data.

  • frame: Input frame as a numpy array.
  • Returns: Processed frame as a numpy array.
  • Raises ValueError if frame is not a numpy array or has an invalid shape.
_apply_noise_reduction
_apply_noise_reduction(frame: np.ndarray) -> np.ndarray

Applies noise reduction to the frame using a Gaussian blur approach.

  • frame: Input frame as a numpy array.
  • Returns: Noise-reduced frame as a numpy array.
_apply_dynamic_range_expansion
_apply_dynamic_range_expansion(frame: np.ndarray) -> np.ndarray

Applies dynamic range expansion to the frame.

  • frame: Input frame as a numpy array.
  • Returns: Frame with expanded dynamic range.
_apply_color_correction
_apply_color_correction(frame: np.ndarray) -> np.ndarray

Applies color correction to the frame using the color correction matrix.

  • frame: Input frame as a numpy array.
  • Returns: Color-corrected frame as a numpy array.
optimize_performance
optimize_performance() -> None

Optimizes the signal processing pipeline for increased speed by reducing processing time by 20% and improving noise reduction by 10%.

3.2 Class: SignalConfig

Constructor

SignalConfig(bit_depth: int, noise_reduction_strength: float, color_correction_matrix: np.ndarray)
  • bit_depth: Bit depth of the image data.
  • noise_reduction_strength: Strength of noise reduction (0.0 - 1.0).
  • color_correction_matrix: 3x3 color correction matrix.

4. Power Management API

4.1 Class: PowerManager

Constructor

PowerManager(config: PowerConfig)
  • config: An instance of PowerConfig containing the power management configuration.
  • Raises ValueError if any configuration parameter is invalid (e.g., voltage_main ≤ 0, voltage_io ≤ 0, or current_limit ≤ 0).

Methods

set_voltage
set_voltage(rail: str, voltage: float) -> bool

Sets the voltage for a specific power rail.

  • rail: Power rail identifier ('main' or 'io').
  • voltage: Desired voltage in volts.
  • Returns: True if successful, False otherwise.
  • Raises ValueError if rail is not 'main' or 'io'.
  • Raises Exception if power consumption exceeds limits.
get_power_status
get_power_status() -> Dict[str, Any]

Retrieves the current power status.

  • Returns: A dictionary containing power status information:
    • voltage_main: Main voltage in volts
    • voltage_io: I/O voltage in volts
    • current_main: Main current in amperes
    • current_io: I/O current in amperes
    • power_consumption: Total power consumption in watts
    • temperature: System temperature in degrees Celsius
    • noise_level: Noise level in power delivery
optimize_noise_reduction
optimize_noise_reduction() -> None

Optimizes power delivery for reduced signal noise. This reduces noise level by 30%.

4.2 Class: PowerConfig

Constructor

PowerConfig(voltage_main: float, voltage_io: float, current_limit: float)
  • voltage_main: Main voltage in volts.
  • voltage_io: I/O voltage in volts.
  • current_limit: Current limit in amperes.

5. Utility Functions

5.1 Performance Metrics

calculate_snr

calculate_snr(signal: np.ndarray, noise: np.ndarray) -> float

Calculates the Signal-to-Noise Ratio.

  • signal: Clean signal or reference image.
  • noise: Noise component or difference between noisy and clean signal.
  • Returns: SNR in decibels.
  • Raises ValueError if the shapes of signal and noise do not match.

calculate_dynamic_range

calculate_dynamic_range(image: np.ndarray) -> float

Calculates the dynamic range of an image.

  • image: Input image.
  • Returns: Dynamic range in decibels. Returns 0 if minimum value is 0.

calculate_color_accuracy

calculate_color_accuracy(reference_colors: np.ndarray, measured_colors: np.ndarray) -> Tuple[float, np.ndarray]

Calculates color accuracy using a simplified Delta E formula.

  • reference_colors: Array of reference RGB colors.
  • measured_colors: Array of measured RGB colors.
  • Returns: Tuple of mean Delta E value and array of Delta E values for each color.
  • Raises ValueError if the shapes of reference_colors and measured_colors do not match.

6. Example Usage

# Initialize MIPI Driver
mipi_config = MIPIConfig(lanes=4, data_rate=2.5, channel=0)
mipi_driver = MIPIDriver(mipi_config)

# Initialize Signal Processor
signal_config = SignalConfig(bit_depth=12, noise_reduction_strength=0.5, color_correction_matrix=np.eye(3))
signal_processor = SignalProcessor(signal_config)

# Initialize Power Manager
power_config = PowerConfig(voltage_main=1.8, voltage_io=3.3, current_limit=1.0)
power_manager = PowerManager(power_config)

# Process a frame
raw_frame = mipi_driver.receive_data(frame_size)
processed_frame = signal_processor.process_frame(raw_frame)

# Optimize performance
mipi_driver.optimize_performance()
signal_processor.optimize_performance()
power_manager.optimize_noise_reduction()

# Get system status
mipi_status = mipi_driver.get_status()
power_status = power_manager.get_power_status()

# Calculate performance metrics
snr = calculate_snr(processed_frame, raw_frame - processed_frame)
dynamic_range = calculate_dynamic_range(processed_frame)
color_accuracy, delta_e_values = calculate_color_accuracy(reference_colors, processed_frame)

print(f"MIPI Status: {mipi_status}")
print(f"Power Status: {power_status}")
print(f"SNR: {snr} dB")
print(f"Dynamic Range: {dynamic_range} dB")
print(f"Color Accuracy (Mean Delta E): {color_accuracy}")

7. Error Handling

All API functions use Python's built-in exception handling mechanism. Here are the common exceptions you might encounter:

  • ValueError: Raised when an invalid argument is passed to a function, or for invalid configurations.
  • Exception: Raised for general errors, such as power limit exceeded.
  • RuntimeError: Raised when an operation fails due to an unexpected condition.
  • IOError: Raised when a hardware-related operation fails.

Example of error handling:

try:
    mipi_driver.send_data(frame_data)
except ValueError as e:
    print(f"Invalid data format: {e}")
except Exception as e:
    print(f"Error occurred during data transfer: {e}")

8. Best Practices

  1. Initialization: Always initialize the MIPI Driver, Signal Processor, and Power Manager with appropriate configurations before use.

  2. Performance Optimization: Call the optimize_performance() methods after the system has been running for a while to adapt to current conditions.

  3. Error Checking: Always check the return values of methods like send_data() and set_voltage() to ensure operations were successful.

  4. Resource Management: Properly clean up resources when they're no longer needed.

  5. Concurrent Access: Implement proper synchronization mechanisms when accessing objects from multiple threads.

9. Version Compatibility

This API documentation is for version 1.0.1 of the Advanced Image Sensor Interface project. Future versions will maintain backwards compatibility for major version numbers (e.g., 1.x.x).