This document provides comprehensive documentation for the API of the Advanced Image Sensor Interface project (v1.0.1). It covers the MIPI Driver, Signal Processing Pipeline, and Power Management System interfaces.
MIPIDriver(config: MIPIConfig)
config
: An instance ofMIPIConfig
containing the driver configuration.- Raises
ValueError
if any configuration parameter is invalid (e.g., lanes ≤ 0, data_rate ≤ 0, or channel < 0).
send_data(data: bytes) -> bool
Sends data over the MIPI interface.
data
: Bytes to send.- Returns:
True
if successful,False
otherwise. - Raises
ValueError
ifdata
is not of type bytes.
receive_data(num_bytes: int) -> Optional[bytes]
Receives data from the MIPI interface.
num_bytes
: Number of bytes to receive.- Returns: Received data as bytes, or
None
if an error occurred.
get_status() -> Dict[str, Any]
Retrieves the current status of the MIPI driver.
- Returns: A dictionary containing status information:
lanes
: Number of MIPI lanesdata_rate
: Data rate in Gbps per lanechannel
: MIPI channel numbererror_rate
: Current error ratethroughput
: Current throughputtotal_data_sent
: Total bytes senttotal_time
: Total time spent sending data
optimize_performance() -> None
Optimizes the driver performance for increased data transfer rates. This increases the data rate by 40% and reduces the error rate by 50%.
MIPIConfig(lanes: int, data_rate: float, channel: int)
lanes
: Number of data lanes (1-4).data_rate
: Data rate in Gbps per lane.channel
: MIPI channel number.
SignalProcessor(config: SignalConfig)
config
: An instance ofSignalConfig
containing the processor configuration.
process_frame(frame: np.ndarray) -> np.ndarray
Processes a single frame of image data.
frame
: Input frame as a numpy array.- Returns: Processed frame as a numpy array.
- Raises
ValueError
ifframe
is not a numpy array or has an invalid shape.
_apply_noise_reduction(frame: np.ndarray) -> np.ndarray
Applies noise reduction to the frame using a Gaussian blur approach.
frame
: Input frame as a numpy array.- Returns: Noise-reduced frame as a numpy array.
_apply_dynamic_range_expansion(frame: np.ndarray) -> np.ndarray
Applies dynamic range expansion to the frame.
frame
: Input frame as a numpy array.- Returns: Frame with expanded dynamic range.
_apply_color_correction(frame: np.ndarray) -> np.ndarray
Applies color correction to the frame using the color correction matrix.
frame
: Input frame as a numpy array.- Returns: Color-corrected frame as a numpy array.
optimize_performance() -> None
Optimizes the signal processing pipeline for increased speed by reducing processing time by 20% and improving noise reduction by 10%.
SignalConfig(bit_depth: int, noise_reduction_strength: float, color_correction_matrix: np.ndarray)
bit_depth
: Bit depth of the image data.noise_reduction_strength
: Strength of noise reduction (0.0 - 1.0).color_correction_matrix
: 3x3 color correction matrix.
PowerManager(config: PowerConfig)
config
: An instance ofPowerConfig
containing the power management configuration.- Raises
ValueError
if any configuration parameter is invalid (e.g., voltage_main ≤ 0, voltage_io ≤ 0, or current_limit ≤ 0).
set_voltage(rail: str, voltage: float) -> bool
Sets the voltage for a specific power rail.
rail
: Power rail identifier ('main' or 'io').voltage
: Desired voltage in volts.- Returns:
True
if successful,False
otherwise. - Raises
ValueError
if rail is not 'main' or 'io'. - Raises
Exception
if power consumption exceeds limits.
get_power_status() -> Dict[str, Any]
Retrieves the current power status.
- Returns: A dictionary containing power status information:
voltage_main
: Main voltage in voltsvoltage_io
: I/O voltage in voltscurrent_main
: Main current in amperescurrent_io
: I/O current in amperespower_consumption
: Total power consumption in wattstemperature
: System temperature in degrees Celsiusnoise_level
: Noise level in power delivery
optimize_noise_reduction() -> None
Optimizes power delivery for reduced signal noise. This reduces noise level by 30%.
PowerConfig(voltage_main: float, voltage_io: float, current_limit: float)
voltage_main
: Main voltage in volts.voltage_io
: I/O voltage in volts.current_limit
: Current limit in amperes.
calculate_snr(signal: np.ndarray, noise: np.ndarray) -> float
Calculates the Signal-to-Noise Ratio.
signal
: Clean signal or reference image.noise
: Noise component or difference between noisy and clean signal.- Returns: SNR in decibels.
- Raises
ValueError
if the shapes of signal and noise do not match.
calculate_dynamic_range(image: np.ndarray) -> float
Calculates the dynamic range of an image.
image
: Input image.- Returns: Dynamic range in decibels. Returns 0 if minimum value is 0.
calculate_color_accuracy(reference_colors: np.ndarray, measured_colors: np.ndarray) -> Tuple[float, np.ndarray]
Calculates color accuracy using a simplified Delta E formula.
reference_colors
: Array of reference RGB colors.measured_colors
: Array of measured RGB colors.- Returns: Tuple of mean Delta E value and array of Delta E values for each color.
- Raises
ValueError
if the shapes of reference_colors and measured_colors do not match.
# Initialize MIPI Driver
mipi_config = MIPIConfig(lanes=4, data_rate=2.5, channel=0)
mipi_driver = MIPIDriver(mipi_config)
# Initialize Signal Processor
signal_config = SignalConfig(bit_depth=12, noise_reduction_strength=0.5, color_correction_matrix=np.eye(3))
signal_processor = SignalProcessor(signal_config)
# Initialize Power Manager
power_config = PowerConfig(voltage_main=1.8, voltage_io=3.3, current_limit=1.0)
power_manager = PowerManager(power_config)
# Process a frame
raw_frame = mipi_driver.receive_data(frame_size)
processed_frame = signal_processor.process_frame(raw_frame)
# Optimize performance
mipi_driver.optimize_performance()
signal_processor.optimize_performance()
power_manager.optimize_noise_reduction()
# Get system status
mipi_status = mipi_driver.get_status()
power_status = power_manager.get_power_status()
# Calculate performance metrics
snr = calculate_snr(processed_frame, raw_frame - processed_frame)
dynamic_range = calculate_dynamic_range(processed_frame)
color_accuracy, delta_e_values = calculate_color_accuracy(reference_colors, processed_frame)
print(f"MIPI Status: {mipi_status}")
print(f"Power Status: {power_status}")
print(f"SNR: {snr} dB")
print(f"Dynamic Range: {dynamic_range} dB")
print(f"Color Accuracy (Mean Delta E): {color_accuracy}")
All API functions use Python's built-in exception handling mechanism. Here are the common exceptions you might encounter:
ValueError
: Raised when an invalid argument is passed to a function, or for invalid configurations.Exception
: Raised for general errors, such as power limit exceeded.RuntimeError
: Raised when an operation fails due to an unexpected condition.IOError
: Raised when a hardware-related operation fails.
Example of error handling:
try:
mipi_driver.send_data(frame_data)
except ValueError as e:
print(f"Invalid data format: {e}")
except Exception as e:
print(f"Error occurred during data transfer: {e}")
-
Initialization: Always initialize the MIPI Driver, Signal Processor, and Power Manager with appropriate configurations before use.
-
Performance Optimization: Call the
optimize_performance()
methods after the system has been running for a while to adapt to current conditions. -
Error Checking: Always check the return values of methods like
send_data()
andset_voltage()
to ensure operations were successful. -
Resource Management: Properly clean up resources when they're no longer needed.
-
Concurrent Access: Implement proper synchronization mechanisms when accessing objects from multiple threads.
This API documentation is for version 1.0.1 of the Advanced Image Sensor Interface project. Future versions will maintain backwards compatibility for major version numbers (e.g., 1.x.x).