-
Notifications
You must be signed in to change notification settings - Fork 1k
/
Copy pathgettingstarted.cpp
200 lines (171 loc) · 7.25 KB
/
gettingstarted.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
/*
* See documentation at https://nRF24.github.io/RF24
* See License information at root directory of this library
* Author: Brendan Doherty (2bndy5)
*/
/**
* A simple example of sending data from 1 nRF24L01 transceiver to another.
*
* This example was written to be used on 2 devices acting as "nodes".
* Use `ctrl+c` to quit at any time.
*/
#include <ctime> // time()
#include <iostream> // cin, cout, endl
#include <string> // string, getline()
#include <time.h> // CLOCK_MONOTONIC_RAW, timespec, clock_gettime()
#include <RF24/RF24.h> // RF24, RF24_PA_LOW, delay()
using namespace std;
/****************** Linux ***********************/
// Radio CE Pin, CSN Pin, SPI Speed
// CE Pin uses GPIO number with BCM and SPIDEV drivers, other platforms use their own pin numbering
// CS Pin addresses the SPI bus number at /dev/spidev<a>.<b>
// ie: RF24 radio(<ce_pin>, <a>*10+<b>); spidev1.0 is 10, spidev1.1 is 11 etc..
#define CSN_PIN 0
#ifdef MRAA
#define CE_PIN 15 // GPIO22
#elif defined(RF24_WIRINGPI)
#define CE_PIN 3 // GPIO22
#else
#define CE_PIN 22
#endif
// Generic:
RF24 radio(CE_PIN, CSN_PIN);
/****************** Linux (BBB,x86,etc) ***********************/
// See http://nRF24.github.io/RF24/pages.html for more information on usage
// See https://github.com/eclipse/mraa/ for more information on MRAA
// See https://www.kernel.org/doc/Documentation/spi/spidev for more information on SPIDEV
// For this example, we'll be using a payload containing
// a single float number that will be incremented
// on every successful transmission
float payload = 0.0;
void setRole(); // prototype to set the node's role
void master(); // prototype of the TX node's behavior
void slave(); // prototype of the RX node's behavior
// custom defined timer for evaluating transmission time in microseconds
struct timespec startTimer, endTimer;
uint32_t getMicros(); // prototype to get elapsed time in microseconds
int main(int argc, char** argv)
{
// perform hardware check
if (!radio.begin()) {
cout << "radio hardware is not responding!!" << endl;
return 0; // quit now
}
// to use different addresses on a pair of radios, we need a variable to
// uniquely identify which address this radio will use to transmit
bool radioNumber = 1; // 0 uses address[0] to transmit, 1 uses address[1] to transmit
// print example's name
cout << argv[0] << endl;
// Let these addresses be used for the pair
uint8_t address[2][6] = {"1Node", "2Node"};
// It is very helpful to think of an address as a path instead of as
// an identifying device destination
// Set the radioNumber via the terminal on startup
cout << "Which radio is this? Enter '0' or '1'. Defaults to '0' ";
string input;
getline(cin, input);
radioNumber = input.length() > 0 && (uint8_t)input[0] == 49;
// save on transmission time by setting the radio to only transmit the
// number of bytes we need to transmit a float
radio.setPayloadSize(sizeof(payload)); // float datatype occupies 4 bytes
// Set the PA Level low to try preventing power supply related problems
// because these examples are likely run with nodes in close proximity to
// each other.
radio.setPALevel(RF24_PA_LOW); // RF24_PA_MAX is default.
// set the TX address of the RX node into the TX pipe
radio.openWritingPipe(address[radioNumber]); // always uses pipe 0
// set the RX address of the TX node into a RX pipe
radio.openReadingPipe(1, address[!radioNumber]); // using pipe 1
// For debugging info
// radio.printDetails(); // (smaller) function that prints raw register values
// radio.printPrettyDetails(); // (larger) function that prints human readable data
// ready to execute program now
setRole(); // calls master() or slave() based on user input
return 0;
}
/**
* set this node's role from stdin stream.
* this only considers the first char as input.
*/
void setRole()
{
string input = "";
while (!input.length()) {
cout << "*** PRESS 'T' to begin transmitting to the other node\n";
cout << "*** PRESS 'R' to begin receiving from the other node\n";
cout << "*** PRESS 'Q' to exit" << endl;
getline(cin, input);
if (input.length() >= 1) {
if (input[0] == 'T' || input[0] == 't')
master();
else if (input[0] == 'R' || input[0] == 'r')
slave();
else if (input[0] == 'Q' || input[0] == 'q')
break;
else
cout << input[0] << " is an invalid input. Please try again." << endl;
}
input = ""; // stay in the while loop
} // while
} // setRole()
/**
* make this node act as the transmitter
*/
void master()
{
radio.stopListening(); // put radio in TX mode
unsigned int failure = 0; // keep track of failures
while (failure < 6) {
clock_gettime(CLOCK_MONOTONIC_RAW, &startTimer); // start the timer
bool report = radio.write(&payload, sizeof(float)); // transmit & save the report
uint32_t timerElapsed = getMicros(); // end the timer
if (report) {
// payload was delivered
cout << "Transmission successful! Time to transmit = ";
cout << timerElapsed; // print the timer result
cout << " us. Sent: " << payload << endl; // print payload sent
payload += 0.01; // increment float payload
}
else {
// payload was not delivered
cout << "Transmission failed or timed out" << endl;
failure++;
}
// to make this example readable in the terminal
delay(1000); // slow transmissions down by 1 second
}
cout << failure << " failures detected. Leaving TX role." << endl;
}
/**
* make this node act as the receiver
*/
void slave()
{
radio.startListening(); // put radio in RX mode
time_t startTimer = time(nullptr); // start a timer
while (time(nullptr) - startTimer < 6) { // use 6 second timeout
uint8_t pipe;
if (radio.available(&pipe)) { // is there a payload? get the pipe number that received it
uint8_t bytes = radio.getPayloadSize(); // get the size of the payload
radio.read(&payload, bytes); // fetch payload from FIFO
cout << "Received " << (unsigned int)bytes; // print the size of the payload
cout << " bytes on pipe " << (unsigned int)pipe; // print the pipe number
cout << ": " << payload << endl; // print the payload's value
startTimer = time(nullptr); // reset timer
}
}
cout << "Nothing received in 6 seconds. Leaving RX role." << endl;
radio.stopListening();
}
/**
* Calculate the elapsed time in microseconds
*/
uint32_t getMicros()
{
// this function assumes that the timer was started using
// `clock_gettime(CLOCK_MONOTONIC_RAW, &startTimer);`
clock_gettime(CLOCK_MONOTONIC_RAW, &endTimer);
uint32_t seconds = endTimer.tv_sec - startTimer.tv_sec;
uint32_t useconds = (endTimer.tv_nsec - startTimer.tv_nsec) / 1000;
return ((seconds)*1000 + useconds) + 0.5;
}