-
Notifications
You must be signed in to change notification settings - Fork 1k
/
Copy pathmanualAcknowledgements.cpp
267 lines (230 loc) · 10.8 KB
/
manualAcknowledgements.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
/*
* See documentation at https://nRF24.github.io/RF24
* See License information at root directory of this library
* Author: Brendan Doherty (2bndy5)
*/
/**
* A simple example of sending data from 1 nRF24L01 transceiver to another
* with manually transmitted (non-automatic) Acknowledgement (ACK) payloads.
* This example still uses ACK packets, but they have no payloads. Instead the
* acknowledging response is sent with `write()`. This tactic allows for more
* updated acknowledgement payload data, where actual ACK payloads' data are
* outdated by 1 transmission because they have to loaded before receiving a
* transmission.
*
* This example was written to be used on 2 devices acting as "nodes".
* Use `ctrl+c` to quit at any time.
*/
#include <ctime> // time()
#include <iostream> // cin, cout, endl
#include <string> // string, getline()
#include <time.h> // CLOCK_MONOTONIC_RAW, timespec, clock_gettime()
#include <RF24/RF24.h> // RF24, RF24_PA_LOW, delay()
using namespace std;
/****************** Linux ***********************/
// Radio CE Pin, CSN Pin, SPI Speed
// CE Pin uses GPIO number with BCM and SPIDEV drivers, other platforms use their own pin numbering
// CS Pin addresses the SPI bus number at /dev/spidev<a>.<b>
// ie: RF24 radio(<ce_pin>, <a>*10+<b>); spidev1.0 is 10, spidev1.1 is 11 etc..
#define CSN_PIN 0
#ifdef MRAA
#define CE_PIN 15 // GPIO22
#elif defined(RF24_WIRINGPI)
#define CE_PIN 3 // GPIO22
#else
#define CE_PIN 22
#endif
// Generic:
RF24 radio(CE_PIN, CSN_PIN);
/****************** Linux (BBB,x86,etc) ***********************/
// See http://nRF24.github.io/RF24/pages.html for more information on usage
// See https://github.com/eclipse/mraa/ for more information on MRAA
// See https://www.kernel.org/doc/Documentation/spi/spidev for more information on SPIDEV
// For this example, we'll be using a payload containing
// a string & an integer number that will be incremented
// on every successful transmission.
// Make a data structure to store the entire payload of different datatypes
struct PayloadStruct
{
char message[7]; // only using 6 characters for TX & RX payloads
uint8_t counter;
};
PayloadStruct payload;
void setRole(); // prototype to set the node's role
void master(); // prototype of the TX node's behavior
void slave(); // prototype of the RX node's behavior
// custom defined timer for evaluating transmission time in microseconds
struct timespec startTimer, endTimer;
uint32_t getMicros(); // prototype to get elapsed time in microseconds
int main(int argc, char** argv)
{
// perform hardware check
if (!radio.begin()) {
cout << "radio hardware is not responding!!" << endl;
return 0; // quit now
}
// append a NULL terminating 0 for printing as a c-string
payload.message[6] = 0;
// Let these addresses be used for the pair of nodes used in this example
uint8_t address[2][6] = {"1Node", "2Node"};
// the TX address^ , ^the RX address
// It is very helpful to think of an address as a path instead of as
// an identifying device destination
// to use different addresses on a pair of radios, we need a variable to
// uniquely identify which address this radio will use to transmit
bool radioNumber = 1; // 0 uses address[0] to transmit, 1 uses address[1] to transmit
// print example's name
cout << argv[0] << endl;
// Set the radioNumber via the terminal on startup
cout << "Which radio is this? Enter '0' or '1'. Defaults to '0' ";
string input;
getline(cin, input);
radioNumber = input.length() > 0 && (uint8_t)input[0] == 49;
// Set the PA Level low to try preventing power supply related problems
// because these examples are likely run with nodes in close proximity to
// each other.
radio.setPALevel(RF24_PA_LOW); // RF24_PA_MAX is default.
// save on transmission time by setting the radio to only transmit the
// number of bytes we need to transmit a float
radio.setPayloadSize(sizeof(payload)); // char[7] & uint8_t datatypes occupy 8 bytes
// set the TX address of the RX node into the TX pipe
radio.openWritingPipe(address[radioNumber]); // always uses pipe 0
// set the RX address of the TX node into a RX pipe
radio.openReadingPipe(1, address[!radioNumber]); // using pipe 1
// For debugging info
// radio.printDetails(); // (smaller) function that prints raw register values
// radio.printPrettyDetails(); // (larger) function that prints human readable data
// ready to execute program now
setRole(); // calls master() or slave() based on user input
return 0;
} // main
/**
* set this node's role from stdin stream.
* this only considers the first char as input.
*/
void setRole()
{
string input = "";
while (!input.length()) {
cout << "*** PRESS 'T' to begin transmitting to the other node\n";
cout << "*** PRESS 'R' to begin receiving from the other node\n";
cout << "*** PRESS 'Q' to exit" << endl;
getline(cin, input);
if (input.length() >= 1) {
if (input[0] == 'T' || input[0] == 't')
master();
else if (input[0] == 'R' || input[0] == 'r')
slave();
else if (input[0] == 'Q' || input[0] == 'q')
break;
else
cout << input[0] << " is an invalid input. Please try again." << endl;
}
input = ""; // stay in the while loop
} // while
} // setRole()
/**
* make this node act as the transmitter
*/
void master()
{
memcpy(payload.message, "Hello ", 6); // set the outgoing message
radio.stopListening(); // put in TX mode
unsigned int failures = 0; // keep track of failures
while (failures < 6) {
clock_gettime(CLOCK_MONOTONIC_RAW, &startTimer); // start the timer
bool report = radio.write(&payload, sizeof(payload)); // transmit & save the report
if (report) {
// transmission successful; wait for response and print results
radio.startListening(); // put in RX mode
unsigned long start_timeout = millis(); // timer to detect no response
while (!radio.available()) { // wait for response
if (millis() - start_timeout > 200) // only wait 200 ms
break;
}
unsigned long elapsedTime = getMicros(); // end the timer
radio.stopListening(); // put back in TX mode
// print summary of transactions
uint8_t pipe;
cout << "Transmission successful! ";
if (radio.available(&pipe)) { // is there a payload received? grab the pipe number that received it
uint8_t bytes = radio.getPayloadSize(); // grab the incoming payload size
cout << "Round trip delay = ";
cout << elapsedTime; // print the timer result
cout << " us. Sent: " << payload.message; // print outgoing message
cout << (unsigned int)payload.counter; // print outgoing counter
PayloadStruct received;
radio.read(&received, sizeof(received)); // get incoming payload
cout << " Received " << (unsigned int)bytes; // print incoming payload size
cout << " on pipe " << (unsigned int)pipe; // print RX pipe number
cout << ": " << received.message; // print the incoming message
cout << (unsigned int)received.counter; // print the incoming counter
cout << endl;
payload.counter = received.counter; // save incoming counter for next outgoing counter
}
else {
cout << "Received no response." << endl; // no response received
}
}
else {
cout << "Transmission failed or timed out"; // payload was not delivered
cout << endl;
failures++; // increment failure counter
} // report
// to make this example readable in the terminal
delay(1000); // slow transmissions down by 1 second
} // while
cout << failures << " failures detected. Leaving TX role." << endl;
} // master
/**
* make this node act as the receiver
*/
void slave()
{
memcpy(payload.message, "World ", 6); // set the response message
radio.startListening(); // put in RX mode
time_t startTimer = time(nullptr); // start a timer
while (time(nullptr) - startTimer < 6) { // use 6 second timeout
uint8_t pipe;
if (radio.available(&pipe)) { // is there a payload? get the pipe number that received it
uint8_t bytes = radio.getPayloadSize(); // get size of incoming payload
PayloadStruct received;
radio.read(&received, sizeof(received)); // get incoming payload
payload.counter = received.counter + 1; // increment payload for response
// transmit response & save result to `report`
radio.stopListening(); // put in TX mode
radio.writeFast(&payload, sizeof(payload)); // load response into TX FIFO
bool report = radio.txStandBy(150); // keep retrying for 150 ms
radio.startListening(); // put back in RX mode
// print summary of transactions
cout << "Received " << (unsigned int)bytes; // print the size of the payload
cout << " bytes on pipe ";
cout << (unsigned int)pipe; // print the pipe number
cout << ": " << received.message; // print incoming message
cout << (unsigned int)received.counter; // print incoming counter
if (report) {
cout << " Sent: " << payload.message; // print outgoing message
cout << (unsigned int)payload.counter; // print outgoing counter
cout << endl;
}
else {
cout << " Response failed to send." << endl; // failed to send response
}
startTimer = time(nullptr); // reset timer
} // available
} // while
cout << "Nothing received in 6 seconds. Leaving RX role." << endl;
radio.stopListening(); // recommended idle mode is TX mode
} // slave
/**
* Calculate the elapsed time in microseconds
*/
uint32_t getMicros()
{
// this function assumes that the timer was started using
// `clock_gettime(CLOCK_MONOTONIC_RAW, &startTimer);`
clock_gettime(CLOCK_MONOTONIC_RAW, &endTimer);
uint32_t seconds = endTimer.tv_sec - startTimer.tv_sec;
uint32_t useconds = (endTimer.tv_nsec - startTimer.tv_nsec) / 1000;
return ((seconds)*1000 + useconds) + 0.5;
}