-
Notifications
You must be signed in to change notification settings - Fork 1k
/
Copy pathscanner.py
237 lines (204 loc) · 7.93 KB
/
scanner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
"""A scanner example written in python using the std lib's ncurses wrapper.
This is a good diagnostic tool to check whether you're picking a
good channel for your application.
See documentation at https://nRF24.github.io/RF24
"""
import curses
import time
from typing import List, Tuple, Any
from RF24 import RF24, RF24_1MBPS, RF24_2MBPS, RF24_250KBPS, RF24_DRIVER
########### USER CONFIGURATION ###########
# CE Pin uses GPIO number with RPi and SPIDEV drivers, other drivers use
# their own pin numbering
# CS Pin corresponds the SPI bus number at /dev/spidev<a>.<b>
# ie: radio = RF24(<ce_pin>, <a>*10+<b>)
# where CS pin for /dev/spidev1.0 is 10, /dev/spidev1.1 is 11 etc...
CSN_PIN = 0 # GPIO8 aka CE0 on SPI bus 0: /dev/spidev0.0
if RF24_DRIVER == "MRAA":
CE_PIN = 15 # for GPIO22
elif RF24_DRIVER == "wiringPi":
CE_PIN = 3 # for GPIO22
else:
CE_PIN = 22
radio = RF24(CE_PIN, CSN_PIN)
OFFERED_DATA_RATES = ["1 Mbps", "2 Mbps", "250 kbps"]
AVAILABLE_RATES = [RF24_1MBPS, RF24_2MBPS, RF24_250KBPS]
TOTAL_CHANNELS = 126
CACHE_MAX = 5 # the depth of history to calculate peaks
# To detect noise, we'll use the worst addresses possible (a reverse engineering
# tactic). These addresses are designed to confuse the radio into thinking that the
# RF signal's preamble is part of the packet/payload.
noise_address = [
b"\x55\x55",
b"\xaa\xaa",
b"\x0a\xaa",
b"\xa0\xaa",
b"\x00\xaa",
b"\xab\xaa",
]
class ChannelHistory:
def __init__(self) -> None:
#: FIFO for tracking peak decays
self._history: List[bool] = [False] * CACHE_MAX
#: for the total signal counts
self.total: int = 0
def push(self, value: bool) -> int:
"""Push a scan result's value into history while returning the sum of cached
signals found. This function also increments the total signal count accordingly.
"""
self._history = self._history[1:] + [value]
self.total += value
return self._history.count(True)
#: An array of histories for each channel
stored = [ChannelHistory() for _ in range(TOTAL_CHANNELS)]
class ProgressBar: # pylint: disable=too-few-public-methods
"""This represents a progress bar using a curses window object."""
def __init__( # pylint: disable=too-many-arguments,invalid-name
self,
x: int,
y: int,
cols: int,
std_scr: Any, # type: curses.window,
label: str,
color: int,
):
self.x, self.y, self.width, self.win, self.color = (x, y, cols, std_scr, color)
self.win.move(self.y, self.x)
self.win.attron(curses.color_pair(self.color))
self.win.addstr(label) # always labeled in MHz (4 digits)
for _ in range(self.width - 8): # draw the empty bar
self.win.addch(curses.ACS_HLINE)
self.win.addstr(" - ") # draw the initial signal count
self.win.attroff(curses.color_pair(self.color))
def update(self, completed: int, signal_count: int):
"""Update the progress bar."""
count = " - "
if signal_count:
count = " %X " % min(0xF, signal_count)
filled = (self.width - 8) * completed / CACHE_MAX
offset_x = 5
self.win.move(self.y, self.x + offset_x)
for i in range(offset_x, self.width - 3):
bar_filled = i < (filled + offset_x)
bar_color = 5 if bar_filled else self.color
self.win.attron(curses.color_pair(bar_color))
self.win.addch("=" if bar_filled else curses.ACS_HLINE)
self.win.attroff(curses.color_pair(bar_color))
self.win.attron(curses.color_pair(self.color))
self.win.addstr(count)
self.win.attroff(curses.color_pair(self.color))
def init_display(window) -> List[ProgressBar]:
"""Creates a table of progress bars (1 for each channel)."""
progress_bars: List[ProgressBar] = [None] * TOTAL_CHANNELS
bar_w = int(curses.COLS / 6)
for i in range(21): # 21 rows
for j in range(i, i + (21 * 6), 21): # 6 columns
color = 7 if int(j / 21) % 2 else 3
progress_bars[j] = ProgressBar(
x=bar_w * int(j / 21),
y=i + 3,
cols=bar_w,
std_scr=window,
label=f"{2400 + (j)} ",
color=color,
)
return progress_bars
def init_radio():
"""init the radio"""
if not radio.begin():
raise RuntimeError("Radio hardware not responding!")
radio.setAutoAck(False)
radio.disableCRC()
radio.setAddressWidth(2)
for pipe, address in enumerate(noise_address):
radio.openReadingPipe(pipe, address)
radio.startListening()
radio.stopListening()
radio.flush_rx()
def init_curses():
"""init the curses interface"""
std_scr = curses.initscr()
curses.noecho()
curses.cbreak()
curses.start_color()
curses.use_default_colors()
curses.init_pair(3, curses.COLOR_YELLOW, -1)
curses.init_pair(5, curses.COLOR_MAGENTA, -1)
curses.init_pair(7, curses.COLOR_WHITE, -1)
return std_scr
def deinit_curses(spectrum_passes: int):
"""de-init the curses interface"""
curses.nocbreak()
curses.echo()
curses.endwin()
noisy_channels: int = 0
digit_w = len(str(spectrum_passes))
for channel, data in enumerate(stored):
if data.total:
count_padding = " " * (digit_w - len(str(data.total)))
percentage = round(data.total / spectrum_passes * 100, 3)
print(
f" {channel:>3}: {count_padding}{data.total} / {spectrum_passes} ({percentage} %)"
)
noisy_channels += 1
print(
f"{noisy_channels} channels detected signals out of {spectrum_passes}",
"passes on the entire spectrum.",
)
def get_user_input() -> Tuple[int, int]:
"""Get input parameters for the scan from the user."""
for i, d_rate in enumerate(OFFERED_DATA_RATES):
print(f"{i + 1}. {d_rate}")
d_rate = input("Select your data rate [1, 2, 3] (defaults to 1 Mbps) ")
duration = input("How long (in seconds) to perform scan? ")
while not duration.isdigit():
print("Please enter a positive number.")
duration = input("How long (in seconds) to perform scan? ")
return (
max(1, min(3, 1 if not d_rate.isdigit() else int(d_rate))) - 1,
abs(int(duration)),
)
def scan_channel(channel: int) -> bool:
"""Scan a specified channel and report if a signal was detected."""
radio.channel = channel
radio.startListening()
time.sleep(0.00013)
found_signal = radio.testRPD()
radio.stopListening()
if found_signal or radio.testRPD() or radio.available():
radio.flush_rx()
return True
return False
def main():
spectrum_passes = 0
data_rate, duration = get_user_input()
print(f"Scanning for {duration} seconds at {OFFERED_DATA_RATES[data_rate]}")
init_radio()
radio.setDataRate(AVAILABLE_RATES[data_rate])
try:
std_scr = init_curses()
timer_prompt = "Scanning for {:>3} seconds at " + OFFERED_DATA_RATES[data_rate]
std_scr.addstr(0, 0, "Channels are labeled in MHz.")
std_scr.addstr(1, 0, "Signal counts are clamped to a single hexadecimal digit.")
bars = init_display(std_scr)
channel, val = (0, False)
end = time.monotonic() + duration
while time.monotonic() < end:
std_scr.addstr(2, 0, timer_prompt.format(int(end - time.monotonic())))
val = scan_channel(channel)
cache_sum = stored[channel].push(val)
if stored[channel].total:
bars[channel].update(cache_sum, stored[channel].total)
std_scr.refresh()
if channel + 1 == TOTAL_CHANNELS:
channel = 0
spectrum_passes += 1
else:
channel += 1
finally:
radio.powerDown()
deinit_curses(spectrum_passes)
if __name__ == "__main__":
main()
else:
print("Run 'main()' to run the program.")