-
Notifications
You must be signed in to change notification settings - Fork 555
/
Copy pathscore.py
1099 lines (1021 loc) · 56.9 KB
/
score.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from fastapi import FastAPI, File, UploadFile, Form, Request, HTTPException
from fastapi_health import health
from fastapi.middleware.cors import CORSMiddleware
from src.main import *
from src.QA_integration import *
from src.shared.common_fn import *
import uvicorn
import asyncio
import base64
from langserve import add_routes
from langchain_google_vertexai import ChatVertexAI
from src.api_response import create_api_response
from src.graphDB_dataAccess import graphDBdataAccess
from src.graph_query import get_graph_results,get_chunktext_results,visualize_schema
from src.chunkid_entities import get_entities_from_chunkids
from src.post_processing import create_vector_fulltext_indexes, create_entity_embedding, graph_schema_consolidation
from sse_starlette.sse import EventSourceResponse
from src.communities import create_communities
from src.neighbours import get_neighbour_nodes
import json
from typing import List, Optional
from google.oauth2.credentials import Credentials
import os
from src.logger import CustomLogger
from datetime import datetime, timezone
import time
import gc
from Secweb.XContentTypeOptions import XContentTypeOptions
from Secweb.XFrameOptions import XFrame
from fastapi.middleware.gzip import GZipMiddleware
from src.ragas_eval import *
from starlette.types import ASGIApp, Receive, Scope, Send
from langchain_neo4j import Neo4jGraph
from src.entities.source_node import sourceNode
from starlette.middleware.sessions import SessionMiddleware
from starlette.responses import HTMLResponse, RedirectResponse,JSONResponse
from starlette.requests import Request
import secrets
logger = CustomLogger()
CHUNK_DIR = os.path.join(os.path.dirname(__file__), "chunks")
MERGED_DIR = os.path.join(os.path.dirname(__file__), "merged_files")
def sanitize_filename(filename):
"""
Sanitize the user-provided filename to prevent directory traversal and remove unsafe characters.
"""
# Remove path separators and collapse redundant separators
filename = os.path.basename(filename)
filename = os.path.normpath(filename)
return filename
def validate_file_path(directory, filename):
"""
Construct the full file path and ensure it is within the specified directory.
"""
file_path = os.path.join(directory, filename)
abs_directory = os.path.abspath(directory)
abs_file_path = os.path.abspath(file_path)
# Ensure the file path starts with the intended directory path
if not abs_file_path.startswith(abs_directory):
raise ValueError("Invalid file path")
return abs_file_path
def healthy_condition():
output = {"healthy": True}
return output
def healthy():
return True
def sick():
return False
class CustomGZipMiddleware:
def __init__(
self,
app: ASGIApp,
paths: List[str],
minimum_size: int = 1000,
compresslevel: int = 5
):
self.app = app
self.paths = paths
self.minimum_size = minimum_size
self.compresslevel = compresslevel
async def __call__(self, scope: Scope, receive: Receive, send: Send):
if scope["type"] != "http":
return await self.app(scope, receive, send)
path = scope["path"]
should_compress = any(path.startswith(gzip_path) for gzip_path in self.paths)
if not should_compress:
return await self.app(scope, receive, send)
gzip_middleware = GZipMiddleware(
app=self.app,
minimum_size=self.minimum_size,
compresslevel=self.compresslevel
)
await gzip_middleware(scope, receive, send)
app = FastAPI()
app.add_middleware(XContentTypeOptions)
app.add_middleware(XFrame, Option={'X-Frame-Options': 'DENY'})
app.add_middleware(CustomGZipMiddleware, minimum_size=1000, compresslevel=5,paths=["/sources_list","/url/scan","/extract","/chat_bot","/chunk_entities","/get_neighbours","/graph_query","/schema","/populate_graph_schema","/get_unconnected_nodes_list","/get_duplicate_nodes","/fetch_chunktext","/schema_visualization"])
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_methods=["*"],
allow_headers=["*"],
)
app.add_middleware(SessionMiddleware, secret_key=os.urandom(24))
is_gemini_enabled = os.environ.get("GEMINI_ENABLED", "False").lower() in ("true", "1", "yes")
if is_gemini_enabled:
add_routes(app,ChatVertexAI(), path="/vertexai")
app.add_api_route("/health", health([healthy_condition, healthy]))
@app.post("/url/scan")
async def create_source_knowledge_graph_url(
uri=Form(None),
userName=Form(None),
password=Form(None),
source_url=Form(None),
database=Form(None),
aws_access_key_id=Form(None),
aws_secret_access_key=Form(None),
wiki_query=Form(None),
model=Form(),
gcs_bucket_name=Form(None),
gcs_bucket_folder=Form(None),
source_type=Form(None),
gcs_project_id=Form(None),
access_token=Form(None),
email=Form(None)
):
try:
start = time.time()
if source_url is not None:
source = source_url
else:
source = wiki_query
graph = create_graph_database_connection(uri, userName, password, database)
if source_type == 's3 bucket' and aws_access_key_id and aws_secret_access_key:
lst_file_name,success_count,failed_count = await asyncio.to_thread(create_source_node_graph_url_s3,graph, model, source_url, aws_access_key_id, aws_secret_access_key, source_type
)
elif source_type == 'gcs bucket':
lst_file_name,success_count,failed_count = create_source_node_graph_url_gcs(graph, model, gcs_project_id, gcs_bucket_name, gcs_bucket_folder, source_type,Credentials(access_token)
)
elif source_type == 'web-url':
lst_file_name,success_count,failed_count = await asyncio.to_thread(create_source_node_graph_web_url,graph, model, source_url, source_type
)
elif source_type == 'youtube':
lst_file_name,success_count,failed_count = await asyncio.to_thread(create_source_node_graph_url_youtube,graph, model, source_url, source_type
)
elif source_type == 'Wikipedia':
lst_file_name,success_count,failed_count = await asyncio.to_thread(create_source_node_graph_url_wikipedia,graph, model, wiki_query, source_type
)
else:
return create_api_response('Failed',message='source_type is other than accepted source')
message = f"Source Node created successfully for source type: {source_type} and source: {source}"
end = time.time()
elapsed_time = end - start
json_obj = {'api_name':'url_scan','db_url':uri,'url_scanned_file':lst_file_name, 'source_url':source_url, 'wiki_query':wiki_query, 'logging_time': formatted_time(datetime.now(timezone.utc)), 'elapsed_api_time':f'{elapsed_time:.2f}','userName':userName, 'database':database, 'aws_access_key_id':aws_access_key_id,
'model':model, 'gcs_bucket_name':gcs_bucket_name, 'gcs_bucket_folder':gcs_bucket_folder, 'source_type':source_type,
'gcs_project_id':gcs_project_id, 'logging_time': formatted_time(datetime.now(timezone.utc)),'email':email}
logger.log_struct(json_obj, "INFO")
result ={'elapsed_api_time' : f'{elapsed_time:.2f}'}
return create_api_response("Success",message=message,success_count=success_count,failed_count=failed_count,file_name=lst_file_name,data=result)
except LLMGraphBuilderException as e:
error_message = str(e)
message = f" Unable to create source node for source type: {source_type} and source: {source}"
# Set the status "Success" becuase we are treating these error already handled by application as like custom errors.
json_obj = {'error_message':error_message, 'status':'Success','db_url':uri, 'userName':userName, 'database':database,'success_count':1, 'source_type': source_type, 'source_url':source_url, 'wiki_query':wiki_query, 'logging_time': formatted_time(datetime.now(timezone.utc)),'email':email}
logger.log_struct(json_obj, "INFO")
logging.exception(f'File Failed in upload: {e}')
return create_api_response('Failed',message=message + error_message[:80],error=error_message,file_source=source_type)
except Exception as e:
error_message = str(e)
message = f" Unable to create source node for source type: {source_type} and source: {source}"
json_obj = {'error_message':error_message, 'status':'Failed','db_url':uri, 'userName':userName, 'database':database,'failed_count':1, 'source_type': source_type, 'source_url':source_url, 'wiki_query':wiki_query, 'logging_time': formatted_time(datetime.now(timezone.utc)),'email':email}
logger.log_struct(json_obj, "ERROR")
logging.exception(f'Exception Stack trace upload:{e}')
return create_api_response('Failed',message=message + error_message[:80],error=error_message,file_source=source_type)
finally:
gc.collect()
@app.post("/extract")
async def extract_knowledge_graph_from_file(
uri=Form(None),
userName=Form(None),
password=Form(None),
model=Form(),
database=Form(None),
source_url=Form(None),
aws_access_key_id=Form(None),
aws_secret_access_key=Form(None),
wiki_query=Form(None),
gcs_project_id=Form(None),
gcs_bucket_name=Form(None),
gcs_bucket_folder=Form(None),
gcs_blob_filename=Form(None),
source_type=Form(None),
file_name=Form(None),
allowedNodes=Form(None),
allowedRelationship=Form(None),
token_chunk_size: Optional[int] = Form(None),
chunk_overlap: Optional[int] = Form(None),
chunks_to_combine: Optional[int] = Form(None),
language=Form(None),
access_token=Form(None),
retry_condition=Form(None),
additional_instructions=Form(None),
email=Form(None)
):
"""
Calls 'extract_graph_from_file' in a new thread to create Neo4jGraph from a
PDF file based on the model.
Args:
uri: URI of the graph to extract
userName: Username to use for graph creation
password: Password to use for graph creation
file: File object containing the PDF file
model: Type of model to use ('Diffbot'or'OpenAI GPT')
Returns:
Nodes and Relations created in Neo4j databse for the pdf file
"""
try:
start_time = time.time()
graph = create_graph_database_connection(uri, userName, password, database)
graphDb_data_Access = graphDBdataAccess(graph)
if source_type == 'local file':
file_name = sanitize_filename(file_name)
merged_file_path = validate_file_path(MERGED_DIR, file_name)
uri_latency, result = await extract_graph_from_file_local_file(uri, userName, password, database, model, merged_file_path, file_name, allowedNodes, allowedRelationship, token_chunk_size, chunk_overlap, chunks_to_combine, retry_condition, additional_instructions)
elif source_type == 's3 bucket' and source_url:
uri_latency, result = await extract_graph_from_file_s3(uri, userName, password, database, model, source_url, aws_access_key_id, aws_secret_access_key, file_name, allowedNodes, allowedRelationship, token_chunk_size, chunk_overlap, chunks_to_combine, retry_condition, additional_instructions)
elif source_type == 'web-url':
uri_latency, result = await extract_graph_from_web_page(uri, userName, password, database, model, source_url, file_name, allowedNodes, allowedRelationship, token_chunk_size, chunk_overlap, chunks_to_combine, retry_condition, additional_instructions)
elif source_type == 'youtube' and source_url:
uri_latency, result = await extract_graph_from_file_youtube(uri, userName, password, database, model, source_url, file_name, allowedNodes, allowedRelationship, token_chunk_size, chunk_overlap, chunks_to_combine, retry_condition, additional_instructions)
elif source_type == 'Wikipedia' and wiki_query:
uri_latency, result = await extract_graph_from_file_Wikipedia(uri, userName, password, database, model, wiki_query, language, file_name, allowedNodes, allowedRelationship, token_chunk_size, chunk_overlap, chunks_to_combine, retry_condition, additional_instructions)
elif source_type == 'gcs bucket' and gcs_bucket_name:
uri_latency, result = await extract_graph_from_file_gcs(uri, userName, password, database, model, gcs_project_id, gcs_bucket_name, gcs_bucket_folder, gcs_blob_filename, access_token, file_name, allowedNodes, allowedRelationship, token_chunk_size, chunk_overlap, chunks_to_combine, retry_condition, additional_instructions)
else:
return create_api_response('Failed',message='source_type is other than accepted source')
extract_api_time = time.time() - start_time
if result is not None:
logging.info("Going for counting nodes and relationships in extract")
count_node_time = time.time()
graph = create_graph_database_connection(uri, userName, password, database)
graphDb_data_Access = graphDBdataAccess(graph)
count_response = graphDb_data_Access.update_node_relationship_count(file_name)
logging.info("Nodes and Relationship Counts updated")
if count_response :
result['chunkNodeCount'] = count_response[file_name].get('chunkNodeCount',"0")
result['chunkRelCount'] = count_response[file_name].get('chunkRelCount',"0")
result['entityNodeCount']= count_response[file_name].get('entityNodeCount',"0")
result['entityEntityRelCount']= count_response[file_name].get('entityEntityRelCount',"0")
result['communityNodeCount']= count_response[file_name].get('communityNodeCount',"0")
result['communityRelCount']= count_response[file_name].get('communityRelCount',"0")
result['nodeCount'] = count_response[file_name].get('nodeCount',"0")
result['relationshipCount'] = count_response[file_name].get('relationshipCount',"0")
logging.info(f"counting completed in {(time.time()-count_node_time):.2f}")
result['db_url'] = uri
result['api_name'] = 'extract'
result['source_url'] = source_url
result['wiki_query'] = wiki_query
result['source_type'] = source_type
result['logging_time'] = formatted_time(datetime.now(timezone.utc))
result['elapsed_api_time'] = f'{extract_api_time:.2f}'
result['userName'] = userName
result['database'] = database
result['aws_access_key_id'] = aws_access_key_id
result['gcs_bucket_name'] = gcs_bucket_name
result['gcs_bucket_folder'] = gcs_bucket_folder
result['gcs_blob_filename'] = gcs_blob_filename
result['gcs_project_id'] = gcs_project_id
result['language'] = language
result['retry_condition'] = retry_condition
result['email'] = email
logger.log_struct(result, "INFO")
result.update(uri_latency)
logging.info(f"extraction completed in {extract_api_time:.2f} seconds for file name {file_name}")
return create_api_response('Success', data=result, file_source= source_type)
except LLMGraphBuilderException as e:
error_message = str(e)
graph = create_graph_database_connection(uri, userName, password, database)
graphDb_data_Access = graphDBdataAccess(graph)
graphDb_data_Access.update_exception_db(file_name,error_message, retry_condition)
if source_type == 'local file':
failed_file_process(uri,file_name, merged_file_path)
node_detail = graphDb_data_Access.get_current_status_document_node(file_name)
# Set the status "Completed" in logging becuase we are treating these error already handled by application as like custom errors.
json_obj = {'api_name':'extract','message':error_message,'file_created_at':formatted_time(node_detail[0]['created_time']),'error_message':error_message, 'file_name': file_name,'status':'Completed',
'db_url':uri, 'userName':userName, 'database':database,'success_count':1, 'source_type': source_type, 'source_url':source_url, 'wiki_query':wiki_query, 'logging_time': formatted_time(datetime.now(timezone.utc)),'email':email}
logger.log_struct(json_obj, "INFO")
logging.exception(f'File Failed in extraction: {e}')
return create_api_response("Failed", message = error_message, error=error_message, file_name=file_name)
except Exception as e:
message=f"Failed To Process File:{file_name} or LLM Unable To Parse Content "
error_message = str(e)
graph = create_graph_database_connection(uri, userName, password, database)
graphDb_data_Access = graphDBdataAccess(graph)
graphDb_data_Access.update_exception_db(file_name,error_message, retry_condition)
if source_type == 'local file':
failed_file_process(uri,file_name, merged_file_path)
node_detail = graphDb_data_Access.get_current_status_document_node(file_name)
json_obj = {'api_name':'extract','message':message,'file_created_at':formatted_time(node_detail[0]['created_time']),'error_message':error_message, 'file_name': file_name,'status':'Failed',
'db_url':uri, 'userName':userName, 'database':database,'failed_count':1, 'source_type': source_type, 'source_url':source_url, 'wiki_query':wiki_query, 'logging_time': formatted_time(datetime.now(timezone.utc)),'email':email}
logger.log_struct(json_obj, "ERROR")
logging.exception(f'File Failed in extraction: {e}')
return create_api_response('Failed', message=message + error_message[:100], error=error_message, file_name = file_name)
finally:
gc.collect()
@app.post("/sources_list")
async def get_source_list(
uri=Form(None),
userName=Form(None),
password=Form(None),
database=Form(None),
email=Form(None)):
"""
Calls 'get_source_list_from_graph' which returns list of sources which already exist in databse
"""
try:
start = time.time()
# if password is not None and password != "null":
# decoded_password = decode_password(password)
# else:
# decoded_password = None
# userName = None
# database = None
# if " " in uri:
# uri = uri.replace(" ","+")
result = await asyncio.to_thread(get_source_list_from_graph,uri,userName,password,database)
end = time.time()
elapsed_time = end - start
json_obj = {'api_name':'sources_list','db_url':uri, 'userName':userName, 'database':database, 'logging_time': formatted_time(datetime.now(timezone.utc)), 'elapsed_api_time':f'{elapsed_time:.2f}','email':email}
logger.log_struct(json_obj, "INFO")
return create_api_response("Success",data=result, message=f"Total elapsed API time {elapsed_time:.2f}")
except Exception as e:
job_status = "Failed"
message="Unable to fetch source list"
error_message = str(e)
logging.exception(f'Exception:{error_message}')
return create_api_response(job_status, message=message, error=error_message)
@app.post("/post_processing")
async def post_processing(uri=Form(None), userName=Form(None), password=Form(None), database=Form(None), tasks=Form(None), email=Form(None)):
try:
graph = create_graph_database_connection(uri, userName, password, database)
tasks = set(map(str.strip, json.loads(tasks)))
api_name = 'post_processing'
count_response = []
start = time.time()
if "materialize_text_chunk_similarities" in tasks:
await asyncio.to_thread(update_graph, graph)
api_name = 'post_processing/update_similarity_graph'
logging.info(f'Updated KNN Graph')
if "enable_hybrid_search_and_fulltext_search_in_bloom" in tasks:
await asyncio.to_thread(create_vector_fulltext_indexes, uri=uri, username=userName, password=password, database=database)
api_name = 'post_processing/enable_hybrid_search_and_fulltext_search_in_bloom'
logging.info(f'Full Text index created')
if os.environ.get('ENTITY_EMBEDDING','False').upper()=="TRUE" and "materialize_entity_similarities" in tasks:
await asyncio.to_thread(create_entity_embedding, graph)
api_name = 'post_processing/create_entity_embedding'
logging.info(f'Entity Embeddings created')
if "graph_schema_consolidation" in tasks :
await asyncio.to_thread(graph_schema_consolidation, graph)
api_name = 'post_processing/graph_schema_consolidation'
logging.info(f'Updated nodes and relationship labels')
if "enable_communities" in tasks:
api_name = 'create_communities'
await asyncio.to_thread(create_communities, uri, userName, password, database)
logging.info(f'created communities')
graph = create_graph_database_connection(uri, userName, password, database)
graphDb_data_Access = graphDBdataAccess(graph)
document_name = ""
count_response = graphDb_data_Access.update_node_relationship_count(document_name)
if count_response:
count_response = [{"filename": filename, **counts} for filename, counts in count_response.items()]
logging.info(f'Updated source node with community related counts')
end = time.time()
elapsed_time = end - start
json_obj = {'api_name': api_name, 'db_url': uri, 'userName':userName, 'database':database, 'logging_time': formatted_time(datetime.now(timezone.utc)), 'elapsed_api_time':f'{elapsed_time:.2f}','email':email}
logger.log_struct(json_obj)
return create_api_response('Success', data=count_response, message='All tasks completed successfully')
except Exception as e:
job_status = "Failed"
error_message = str(e)
message = f"Unable to complete tasks"
logging.exception(f'Exception in post_processing tasks: {error_message}')
return create_api_response(job_status, message=message, error=error_message)
finally:
gc.collect()
@app.post("/chat_bot")
async def chat_bot(uri=Form(None),model=Form(None),userName=Form(None), password=Form(None), database=Form(None),question=Form(None), document_names=Form(None),session_id=Form(None),mode=Form(None),email=Form(None)):
logging.info(f"QA_RAG called at {datetime.now()}")
qa_rag_start_time = time.time()
try:
if mode == "graph":
graph = Neo4jGraph( url=uri,username=userName,password=password,database=database,sanitize = True, refresh_schema=True)
else:
graph = create_graph_database_connection(uri, userName, password, database)
graph_DB_dataAccess = graphDBdataAccess(graph)
write_access = graph_DB_dataAccess.check_account_access(database=database)
result = await asyncio.to_thread(QA_RAG,graph=graph,model=model,question=question,document_names=document_names,session_id=session_id,mode=mode,write_access=write_access)
total_call_time = time.time() - qa_rag_start_time
logging.info(f"Total Response time is {total_call_time:.2f} seconds")
result["info"]["response_time"] = round(total_call_time, 2)
json_obj = {'api_name':'chat_bot','db_url':uri, 'userName':userName, 'database':database, 'question':question,'document_names':document_names,
'session_id':session_id, 'mode':mode, 'logging_time': formatted_time(datetime.now(timezone.utc)), 'elapsed_api_time':f'{total_call_time:.2f}','email':email}
logger.log_struct(json_obj, "INFO")
return create_api_response('Success',data=result)
except Exception as e:
job_status = "Failed"
message="Unable to get chat response"
error_message = str(e)
logging.exception(f'Exception in chat bot:{error_message}')
return create_api_response(job_status, message=message, error=error_message,data=mode)
finally:
gc.collect()
@app.post("/chunk_entities")
async def chunk_entities(uri=Form(None),userName=Form(None), password=Form(None), database=Form(None), nodedetails=Form(None),entities=Form(),mode=Form(),email=Form(None)):
try:
start = time.time()
result = await asyncio.to_thread(get_entities_from_chunkids,nodedetails=nodedetails,entities=entities,mode=mode,uri=uri, username=userName, password=password, database=database)
end = time.time()
elapsed_time = end - start
json_obj = {'api_name':'chunk_entities','db_url':uri, 'userName':userName, 'database':database, 'nodedetails':nodedetails,'entities':entities,
'mode':mode, 'logging_time': formatted_time(datetime.now(timezone.utc)), 'elapsed_api_time':f'{elapsed_time:.2f}','email':email}
logger.log_struct(json_obj, "INFO")
return create_api_response('Success',data=result,message=f"Total elapsed API time {elapsed_time:.2f}")
except Exception as e:
job_status = "Failed"
message="Unable to extract entities from chunk ids"
error_message = str(e)
logging.exception(f'Exception in chat bot:{error_message}')
return create_api_response(job_status, message=message, error=error_message)
finally:
gc.collect()
@app.post("/get_neighbours")
async def get_neighbours(uri=Form(None),userName=Form(None), password=Form(None), database=Form(None), elementId=Form(None),email=Form(None)):
try:
start = time.time()
result = await asyncio.to_thread(get_neighbour_nodes,uri=uri, username=userName, password=password,database=database, element_id=elementId)
end = time.time()
elapsed_time = end - start
json_obj = {'api_name':'get_neighbours', 'userName':userName, 'database':database,'db_url':uri, 'logging_time': formatted_time(datetime.now(timezone.utc)), 'elapsed_api_time':f'{elapsed_time:.2f}','email':email}
logger.log_struct(json_obj, "INFO")
return create_api_response('Success',data=result,message=f"Total elapsed API time {elapsed_time:.2f}")
except Exception as e:
job_status = "Failed"
message="Unable to extract neighbour nodes for given element ID"
error_message = str(e)
logging.exception(f'Exception in get neighbours :{error_message}')
return create_api_response(job_status, message=message, error=error_message)
finally:
gc.collect()
@app.post("/graph_query")
async def graph_query(
uri: str = Form(None),
database: str = Form(None),
userName: str = Form(None),
password: str = Form(None),
document_names: str = Form(None),
email=Form(None)
):
try:
start = time.time()
result = await asyncio.to_thread(
get_graph_results,
uri=uri,
username=userName,
password=password,
database=database,
document_names=document_names
)
end = time.time()
elapsed_time = end - start
json_obj = {'api_name':'graph_query','db_url':uri, 'userName':userName, 'database':database, 'document_names':document_names, 'logging_time': formatted_time(datetime.now(timezone.utc)), 'elapsed_api_time':f'{elapsed_time:.2f}','email':email}
logger.log_struct(json_obj, "INFO")
return create_api_response('Success', data=result,message=f"Total elapsed API time {elapsed_time:.2f}")
except Exception as e:
job_status = "Failed"
message = "Unable to get graph query response"
error_message = str(e)
logging.exception(f'Exception in graph query: {error_message}')
return create_api_response(job_status, message=message, error=error_message)
finally:
gc.collect()
@app.post("/clear_chat_bot")
async def clear_chat_bot(uri=Form(None),userName=Form(None), password=Form(None), database=Form(None), session_id=Form(None),email=Form(None)):
try:
start = time.time()
graph = create_graph_database_connection(uri, userName, password, database)
result = await asyncio.to_thread(clear_chat_history,graph=graph,session_id=session_id)
end = time.time()
elapsed_time = end - start
json_obj = {'api_name':'clear_chat_bot', 'db_url':uri, 'userName':userName, 'database':database, 'session_id':session_id, 'logging_time': formatted_time(datetime.now(timezone.utc)), 'elapsed_api_time':f'{elapsed_time:.2f}','email':email}
logger.log_struct(json_obj, "INFO")
return create_api_response('Success',data=result)
except Exception as e:
job_status = "Failed"
message="Unable to clear chat History"
error_message = str(e)
logging.exception(f'Exception in chat bot:{error_message}')
return create_api_response(job_status, message=message, error=error_message)
finally:
gc.collect()
@app.post("/connect")
async def connect(uri=Form(None), userName=Form(None), password=Form(None), database=Form(None),email=Form(None)):
try:
start = time.time()
graph = create_graph_database_connection(uri, userName, password, database)
result = await asyncio.to_thread(connection_check_and_get_vector_dimensions, graph, database)
gcs_file_cache = os.environ.get('GCS_FILE_CACHE')
end = time.time()
elapsed_time = end - start
json_obj = {'api_name':'connect','db_url':uri, 'userName':userName, 'database':database, 'count':1, 'logging_time': formatted_time(datetime.now(timezone.utc)), 'elapsed_api_time':f'{elapsed_time:.2f}','email':email}
logger.log_struct(json_obj, "INFO")
result['elapsed_api_time'] = f'{elapsed_time:.2f}'
result['gcs_file_cache'] = gcs_file_cache
return create_api_response('Success',data=result)
except Exception as e:
job_status = "Failed"
message="Connection failed to connect Neo4j database"
error_message = str(e)
logging.exception(f'Connection failed to connect Neo4j database:{error_message}')
return create_api_response(job_status, message=message, error=error_message)
@app.post("/upload")
async def upload_large_file_into_chunks(file:UploadFile = File(...), chunkNumber=Form(None), totalChunks=Form(None),
originalname=Form(None), model=Form(None), uri=Form(None), userName=Form(None),
password=Form(None), database=Form(None),email=Form(None)):
try:
start = time.time()
graph = create_graph_database_connection(uri, userName, password, database)
result = await asyncio.to_thread(upload_file, graph, model, file, chunkNumber, totalChunks, originalname, uri, CHUNK_DIR, MERGED_DIR)
end = time.time()
elapsed_time = end - start
json_obj = {'api_name':'upload','db_url':uri,'userName':userName, 'database':database, 'chunkNumber':chunkNumber,'totalChunks':totalChunks,
'original_file_name':originalname,'model':model, 'logging_time': formatted_time(datetime.now(timezone.utc)), 'elapsed_api_time':f'{elapsed_time:.2f}','email':email}
logger.log_struct(json_obj, "INFO")
if int(chunkNumber) == int(totalChunks):
return create_api_response('Success',data=result, message='Source Node Created Successfully')
else:
return create_api_response('Success', message=result)
except Exception as e:
message="Unable to upload large file into chunks. "
error_message = str(e)
logging.info(message)
logging.exception(f'Exception:{error_message}')
return create_api_response('Failed', message=message + error_message[:100], error=error_message, file_name = originalname)
finally:
gc.collect()
@app.post("/schema")
async def get_structured_schema(uri=Form(None), userName=Form(None), password=Form(None), database=Form(None),email=Form(None)):
try:
start = time.time()
graph = create_graph_database_connection(uri, userName, password, database)
result = await asyncio.to_thread(get_labels_and_relationtypes, graph)
end = time.time()
elapsed_time = end - start
logging.info(f'Schema result from DB: {result}')
json_obj = {'api_name':'schema','db_url':uri, 'userName':userName, 'database':database, 'logging_time': formatted_time(datetime.now(timezone.utc)), 'elapsed_api_time':f'{elapsed_time:.2f}','email':email}
logger.log_struct(json_obj, "INFO")
return create_api_response('Success', data=result,message=f"Total elapsed API time {elapsed_time:.2f}")
except Exception as e:
message="Unable to get the labels and relationtypes from neo4j database"
error_message = str(e)
logging.info(message)
logging.exception(f'Exception:{error_message}')
return create_api_response("Failed", message=message, error=error_message)
finally:
gc.collect()
def decode_password(pwd):
sample_string_bytes = base64.b64decode(pwd)
decoded_password = sample_string_bytes.decode("utf-8")
return decoded_password
def encode_password(pwd):
data_bytes = pwd.encode('ascii')
encoded_pwd_bytes = base64.b64encode(data_bytes)
return encoded_pwd_bytes
@app.get("/update_extract_status/{file_name}")
async def update_extract_status(request: Request, file_name: str, uri:str=None, userName:str=None, password:str=None, database:str=None):
async def generate():
status = ''
if password is not None and password != "null":
decoded_password = decode_password(password)
else:
decoded_password = None
url = uri
if url and " " in url:
url= url.replace(" ","+")
graph = create_graph_database_connection(url, userName, decoded_password, database)
graphDb_data_Access = graphDBdataAccess(graph)
while True:
try:
if await request.is_disconnected():
logging.info(" SSE Client disconnected")
break
# get the current status of document node
else:
result = graphDb_data_Access.get_current_status_document_node(file_name)
if len(result) > 0:
status = json.dumps({'fileName':file_name,
'status':result[0]['Status'],
'processingTime':result[0]['processingTime'],
'nodeCount':result[0]['nodeCount'],
'relationshipCount':result[0]['relationshipCount'],
'model':result[0]['model'],
'total_chunks':result[0]['total_chunks'],
'fileSize':result[0]['fileSize'],
'processed_chunk':result[0]['processed_chunk'],
'fileSource':result[0]['fileSource'],
'chunkNodeCount' : result[0]['chunkNodeCount'],
'chunkRelCount' : result[0]['chunkRelCount'],
'entityNodeCount' : result[0]['entityNodeCount'],
'entityEntityRelCount' : result[0]['entityEntityRelCount'],
'communityNodeCount' : result[0]['communityNodeCount'],
'communityRelCount' : result[0]['communityRelCount']
})
yield status
except asyncio.CancelledError:
logging.info("SSE Connection cancelled")
return EventSourceResponse(generate(),ping=60)
@app.post("/delete_document_and_entities")
async def delete_document_and_entities(uri=Form(None),
userName=Form(None),
password=Form(None),
database=Form(None),
filenames=Form(),
source_types=Form(),
deleteEntities=Form(),
email=Form(None)):
try:
start = time.time()
graph = create_graph_database_connection(uri, userName, password, database)
graphDb_data_Access = graphDBdataAccess(graph)
files_list_size = await asyncio.to_thread(graphDb_data_Access.delete_file_from_graph, filenames, source_types, deleteEntities, MERGED_DIR, uri)
message = f"Deleted {files_list_size} documents with entities from database"
end = time.time()
elapsed_time = end - start
json_obj = {'api_name':'delete_document_and_entities','db_url':uri, 'userName':userName, 'database':database, 'filenames':filenames,'deleteEntities':deleteEntities,
'source_types':source_types, 'logging_time': formatted_time(datetime.now(timezone.utc)), 'elapsed_api_time':f'{elapsed_time:.2f}','email':email}
logger.log_struct(json_obj, "INFO")
return create_api_response('Success',message=message)
except Exception as e:
job_status = "Failed"
message=f"Unable to delete document {filenames}"
error_message = str(e)
logging.exception(f'{message}:{error_message}')
return create_api_response(job_status, message=message, error=error_message)
finally:
gc.collect()
@app.get('/document_status/{file_name}')
async def get_document_status(file_name, url, userName, password, database):
decoded_password = decode_password(password)
try:
if " " in url:
uri= url.replace(" ","+")
else:
uri=url
graph = create_graph_database_connection(uri, userName, decoded_password, database)
graphDb_data_Access = graphDBdataAccess(graph)
result = graphDb_data_Access.get_current_status_document_node(file_name)
if len(result) > 0:
status = {'fileName':file_name,
'status':result[0]['Status'],
'processingTime':result[0]['processingTime'],
'nodeCount':result[0]['nodeCount'],
'relationshipCount':result[0]['relationshipCount'],
'model':result[0]['model'],
'total_chunks':result[0]['total_chunks'],
'fileSize':result[0]['fileSize'],
'processed_chunk':result[0]['processed_chunk'],
'fileSource':result[0]['fileSource'],
'chunkNodeCount' : result[0]['chunkNodeCount'],
'chunkRelCount' : result[0]['chunkRelCount'],
'entityNodeCount' : result[0]['entityNodeCount'],
'entityEntityRelCount' : result[0]['entityEntityRelCount'],
'communityNodeCount' : result[0]['communityNodeCount'],
'communityRelCount' : result[0]['communityRelCount']
}
else:
status = {'fileName':file_name, 'status':'Failed'}
logging.info(f'Result of document status in refresh : {result}')
return create_api_response('Success',message="",file_name=status)
except Exception as e:
message=f"Unable to get the document status"
error_message = str(e)
logging.exception(f'{message}:{error_message}')
return create_api_response('Failed',message=message)
@app.post("/cancelled_job")
async def cancelled_job(uri=Form(None), userName=Form(None), password=Form(None), database=Form(None), filenames=Form(None), source_types=Form(None),email=Form(None)):
try:
start = time.time()
graph = create_graph_database_connection(uri, userName, password, database)
result = manually_cancelled_job(graph,filenames, source_types, MERGED_DIR, uri)
end = time.time()
elapsed_time = end - start
json_obj = {'api_name':'cancelled_job','db_url':uri, 'userName':userName, 'database':database, 'filenames':filenames,
'source_types':source_types, 'logging_time': formatted_time(datetime.now(timezone.utc)), 'elapsed_api_time':f'{elapsed_time:.2f}','email':email}
logger.log_struct(json_obj, "INFO")
return create_api_response('Success',message=result)
except Exception as e:
job_status = "Failed"
message="Unable to cancelled the running job"
error_message = str(e)
logging.exception(f'Exception in cancelling the running job:{error_message}')
return create_api_response(job_status, message=message, error=error_message)
finally:
gc.collect()
@app.post("/populate_graph_schema")
async def populate_graph_schema(input_text=Form(None), model=Form(None), is_schema_description_checked=Form(None),email=Form(None)):
try:
start = time.time()
result = populate_graph_schema_from_text(input_text, model, is_schema_description_checked)
end = time.time()
elapsed_time = end - start
json_obj = {'api_name':'populate_graph_schema', 'model':model, 'is_schema_description_checked':is_schema_description_checked, 'input_text':input_text, 'logging_time': formatted_time(datetime.now(timezone.utc)), 'elapsed_api_time':f'{elapsed_time:.2f}','email':email}
logger.log_struct(json_obj, "INFO")
return create_api_response('Success',data=result)
except Exception as e:
job_status = "Failed"
message="Unable to get the schema from text"
error_message = str(e)
logging.exception(f'Exception in getting the schema from text:{error_message}')
return create_api_response(job_status, message=message, error=error_message)
finally:
gc.collect()
@app.post("/get_unconnected_nodes_list")
async def get_unconnected_nodes_list(uri=Form(None), userName=Form(None), password=Form(None), database=Form(None),email=Form(None)):
try:
start = time.time()
graph = create_graph_database_connection(uri, userName, password, database)
graphDb_data_Access = graphDBdataAccess(graph)
nodes_list, total_nodes = graphDb_data_Access.list_unconnected_nodes()
end = time.time()
elapsed_time = end - start
json_obj = {'api_name':'get_unconnected_nodes_list','db_url':uri, 'userName':userName, 'database':database, 'logging_time': formatted_time(datetime.now(timezone.utc)), 'elapsed_api_time':f'{elapsed_time:.2f}','email':email}
logger.log_struct(json_obj, "INFO")
return create_api_response('Success',data=nodes_list,message=total_nodes)
except Exception as e:
job_status = "Failed"
message="Unable to get the list of unconnected nodes"
error_message = str(e)
logging.exception(f'Exception in getting list of unconnected nodes:{error_message}')
return create_api_response(job_status, message=message, error=error_message)
finally:
gc.collect()
@app.post("/delete_unconnected_nodes")
async def delete_orphan_nodes(uri=Form(None), userName=Form(None), password=Form(None), database=Form(None),unconnected_entities_list=Form(),email=Form(None)):
try:
start = time.time()
graph = create_graph_database_connection(uri, userName, password, database)
graphDb_data_Access = graphDBdataAccess(graph)
result = graphDb_data_Access.delete_unconnected_nodes(unconnected_entities_list)
end = time.time()
elapsed_time = end - start
json_obj = {'api_name':'delete_unconnected_nodes','db_url':uri, 'userName':userName, 'database':database,'unconnected_entities_list':unconnected_entities_list, 'logging_time': formatted_time(datetime.now(timezone.utc)), 'elapsed_api_time':f'{elapsed_time:.2f}','email':email}
logger.log_struct(json_obj, "INFO")
return create_api_response('Success',data=result,message="Unconnected entities delete successfully")
except Exception as e:
job_status = "Failed"
message="Unable to delete the unconnected nodes"
error_message = str(e)
logging.exception(f'Exception in delete the unconnected nodes:{error_message}')
return create_api_response(job_status, message=message, error=error_message)
finally:
gc.collect()
@app.post("/get_duplicate_nodes")
async def get_duplicate_nodes(uri=Form(None), userName=Form(None), password=Form(None), database=Form(None),email=Form(None)):
try:
start = time.time()
graph = create_graph_database_connection(uri, userName, password, database)
graphDb_data_Access = graphDBdataAccess(graph)
nodes_list, total_nodes = graphDb_data_Access.get_duplicate_nodes_list()
end = time.time()
elapsed_time = end - start
json_obj = {'api_name':'get_duplicate_nodes','db_url':uri,'userName':userName, 'database':database, 'logging_time': formatted_time(datetime.now(timezone.utc)), 'elapsed_api_time':f'{elapsed_time:.2f}','email':email}
logger.log_struct(json_obj, "INFO")
return create_api_response('Success',data=nodes_list, message=total_nodes)
except Exception as e:
job_status = "Failed"
message="Unable to get the list of duplicate nodes"
error_message = str(e)
logging.exception(f'Exception in getting list of duplicate nodes:{error_message}')
return create_api_response(job_status, message=message, error=error_message)
finally:
gc.collect()
@app.post("/merge_duplicate_nodes")
async def merge_duplicate_nodes(uri=Form(None), userName=Form(None), password=Form(None), database=Form(None),duplicate_nodes_list=Form(),email=Form(None)):
try:
start = time.time()
graph = create_graph_database_connection(uri, userName, password, database)
graphDb_data_Access = graphDBdataAccess(graph)
result = graphDb_data_Access.merge_duplicate_nodes(duplicate_nodes_list)
end = time.time()
elapsed_time = end - start
json_obj = {'api_name':'merge_duplicate_nodes','db_url':uri, 'userName':userName, 'database':database,
'duplicate_nodes_list':duplicate_nodes_list, 'logging_time': formatted_time(datetime.now(timezone.utc)), 'elapsed_api_time':f'{elapsed_time:.2f}','email':email}
logger.log_struct(json_obj, "INFO")
return create_api_response('Success',data=result,message="Duplicate entities merged successfully")
except Exception as e:
job_status = "Failed"
message="Unable to merge the duplicate nodes"
error_message = str(e)
logging.exception(f'Exception in merge the duplicate nodes:{error_message}')
return create_api_response(job_status, message=message, error=error_message)
finally:
gc.collect()
@app.post("/drop_create_vector_index")
async def drop_create_vector_index(uri=Form(None), userName=Form(None), password=Form(None), database=Form(None), isVectorIndexExist=Form(),email=Form(None)):
try:
start = time.time()
graph = create_graph_database_connection(uri, userName, password, database)
graphDb_data_Access = graphDBdataAccess(graph)
result = graphDb_data_Access.drop_create_vector_index(isVectorIndexExist)
end = time.time()
elapsed_time = end - start
json_obj = {'api_name':'drop_create_vector_index', 'db_url':uri, 'userName':userName, 'database':database,
'isVectorIndexExist':isVectorIndexExist, 'logging_time': formatted_time(datetime.now(timezone.utc)), 'elapsed_api_time':f'{elapsed_time:.2f}','email':email}
logger.log_struct(json_obj, "INFO")
return create_api_response('Success',message=result)
except Exception as e:
job_status = "Failed"
message="Unable to drop and re-create vector index with correct dimesion as per application configuration"
error_message = str(e)
logging.exception(f'Exception into drop and re-create vector index with correct dimesion as per application configuration:{error_message}')
return create_api_response(job_status, message=message, error=error_message)
finally:
gc.collect()
@app.post("/retry_processing")
async def retry_processing(uri=Form(None), userName=Form(None), password=Form(None), database=Form(None), file_name=Form(), retry_condition=Form(), email=Form(None)):
try:
start = time.time()
graph = create_graph_database_connection(uri, userName, password, database)
chunks = graph.query(QUERY_TO_GET_CHUNKS, params={"filename":file_name})
end = time.time()
elapsed_time = end - start
json_obj = {'api_name':'retry_processing', 'db_url':uri, 'userName':userName, 'database':database, 'file_name':file_name,'retry_condition':retry_condition,
'logging_time': formatted_time(datetime.now(timezone.utc)), 'elapsed_api_time':f'{elapsed_time:.2f}','email':email}
logger.log_struct(json_obj, "INFO")
if chunks[0]['text'] is None or chunks[0]['text']=="" or not chunks :
return create_api_response('Success',message=f"Chunks are not created for the file{file_name}. Please upload again the file to re-process.",data=chunks)
else:
await asyncio.to_thread(set_status_retry, graph,file_name,retry_condition)
return create_api_response('Success',message=f"Status set to Ready to Reprocess for filename : {file_name}")
except Exception as e:
job_status = "Failed"
message="Unable to set status to Retry"
error_message = str(e)
logging.exception(f'{error_message}')
return create_api_response(job_status, message=message, error=error_message)
finally:
gc.collect()
@app.post('/metric')
async def calculate_metric(question: str = Form(),
context: str = Form(),
answer: str = Form(),
model: str = Form(),
mode: str = Form()):
try:
start = time.time()
context_list = [str(item).strip() for item in json.loads(context)] if context else []
answer_list = [str(item).strip() for item in json.loads(answer)] if answer else []
mode_list = [str(item).strip() for item in json.loads(mode)] if mode else []
result = await asyncio.to_thread(
get_ragas_metrics, question, context_list, answer_list, model
)
if result is None or "error" in result:
return create_api_response(
'Failed',
message='Failed to calculate evaluation metrics.',
error=result.get("error", "Ragas evaluation returned null")
)
data = {mode: {metric: result[metric][i] for metric in result} for i, mode in enumerate(mode_list)}
end = time.time()
elapsed_time = end - start
json_obj = {'api_name':'metric', 'question':question, 'context':context, 'answer':answer, 'model':model,'mode':mode,
'logging_time': formatted_time(datetime.now(timezone.utc)), 'elapsed_api_time':f'{elapsed_time:.2f}'}
logger.log_struct(json_obj, "INFO")
return create_api_response('Success', data=data)
except Exception as e:
logging.exception(f"Error while calculating evaluation metrics: {e}")
return create_api_response(
'Failed',
message="Error while calculating evaluation metrics",
error=str(e)
)
finally:
gc.collect()
@app.post('/additional_metrics')
async def calculate_additional_metrics(question: str = Form(),
context: str = Form(),
answer: str = Form(),
reference: str = Form(),
model: str = Form(),
mode: str = Form(),
):
try:
context_list = [str(item).strip() for item in json.loads(context)] if context else []
answer_list = [str(item).strip() for item in json.loads(answer)] if answer else []
mode_list = [str(item).strip() for item in json.loads(mode)] if mode else []
result = await get_additional_metrics(question, context_list,answer_list, reference, model)
if result is None or "error" in result:
return create_api_response(
'Failed',
message='Failed to calculate evaluation metrics.',
error=result.get("error", "Ragas evaluation returned null")
)
data = {mode: {metric: result[i][metric] for metric in result[i]} for i, mode in enumerate(mode_list)}
return create_api_response('Success', data=data)
except Exception as e:
logging.exception(f"Error while calculating evaluation metrics: {e}")
return create_api_response(
'Failed',
message="Error while calculating evaluation metrics",
error=str(e)
)
finally:
gc.collect()
@app.post("/fetch_chunktext")
async def fetch_chunktext(
uri: str = Form(None),
database: str = Form(None),
userName: str = Form(None),
password: str = Form(None),
document_name: str = Form(),
page_no: int = Form(1),
email=Form(None)
):
try:
start = time.time()
result = await asyncio.to_thread(
get_chunktext_results,