-
Notifications
You must be signed in to change notification settings - Fork 879
/
Copy pathtest_example_stateful_sequence_batching_http.py
154 lines (121 loc) · 3.8 KB
/
test_example_stateful_sequence_batching_http.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import shutil
import sys
import threading
from pathlib import Path
import pytest
import requests
import test_utils
from model_archiver.model_archiver_config import ModelArchiverConfig
CURR_FILE_PATH = Path(__file__).parent
STATEFUL_PATH = CURR_FILE_PATH.parents[1] / "examples" / "stateful"
STATEFUL_SEQUENCE_PATH = (
CURR_FILE_PATH.parents[1] / "examples" / "stateful" / "sequence_batching"
)
CONFIG_PROPERTIES_PATH = CURR_FILE_PATH.parents[1] / "test" / "config_ts.properties"
YAML_CONFIG = f"""
# TorchServe frontend parameters
minWorkers: 2
maxWorkers: 2
batchSize: 4
maxNumSequence: 4
sequenceMaxIdleMSec: 5000
maxSequenceJobQueueSize: 10
sequenceBatching: true
handler:
cache:
capacity: 4
"""
@pytest.fixture
def add_paths():
sys.path.append(STATEFUL_SEQUENCE_PATH.as_posix())
yield
sys.path.pop()
@pytest.fixture(scope="module")
def model_name():
yield "stateful"
@pytest.fixture(scope="module")
def work_dir(tmp_path_factory, model_name):
return tmp_path_factory.mktemp(model_name)
@pytest.fixture(scope="module", name="mar_file_path")
def create_mar_file(work_dir, model_archiver, model_name, request):
mar_file_path = Path(work_dir).joinpath(model_name)
model_config_yaml = Path(work_dir) / "model-config.yaml"
model_config_yaml.write_text(YAML_CONFIG)
config = ModelArchiverConfig(
model_name=model_name,
version="1.0",
handler=(STATEFUL_SEQUENCE_PATH / "stateful_handler.py").as_posix(),
serialized_file=(STATEFUL_PATH / "model_cnn.pt").as_posix(),
model_file=(STATEFUL_PATH / "model.py").as_posix(),
export_path=work_dir,
requirements_file=(STATEFUL_PATH / "requirements.txt").as_posix(),
runtime="python",
force=False,
config_file=model_config_yaml.as_posix(),
archive_format="no-archive",
)
model_archiver.generate_model_archive(config)
assert mar_file_path.exists()
yield mar_file_path.as_posix()
# Clean up files
shutil.rmtree(mar_file_path)
def test_stateful_mar(mar_file_path, model_store):
"""
Register the model in torchserve
"""
file_name = Path(mar_file_path).name
model_name = Path(file_name).stem
shutil.copytree(mar_file_path, Path(model_store) / model_name)
params = (
("model_name", model_name),
("url", Path(model_store) / model_name),
("initial_workers", "2"),
("synchronous", "true"),
)
test_utils.start_torchserve(
model_store=model_store, snapshot_file=CONFIG_PROPERTIES_PATH, gen_mar=False
)
try:
test_utils.reg_resp = test_utils.register_model_with_params(params)
t0 = threading.Thread(
target=__infer_stateful,
args=(
model_name,
"seq_0",
"1 4 9 16 25",
),
)
t1 = threading.Thread(
target=__infer_stateful,
args=(
model_name,
"seq_1",
"2 6 12 20 30",
),
)
t0.start()
t1.start()
t0.join()
t1.join()
finally:
test_utils.unregister_model(model_name)
# Clean up files
shutil.rmtree(Path(model_store) / model_name)
test_utils.stop_torchserve()
def __infer_stateful(model_name, sequence_id, expected):
headers = {
"ts_request_sequence_id": sequence_id,
}
prediction = []
for idx in range(5):
if sequence_id == "seq_0":
idx = 2 * idx
elif sequence_id == "seq_1":
idx = 2 * idx + 1
response = requests.post(
url=f"http://localhost:8080/predictions/{model_name}",
headers=headers,
data=str(idx + 1).encode(),
)
prediction.append(response.text)
assert str(" ".join(prediction)) == expected