-
Notifications
You must be signed in to change notification settings - Fork 879
/
Copy pathtest_example_stateful_sequence_continuous_batching_http.py
486 lines (400 loc) · 14.2 KB
/
test_example_stateful_sequence_continuous_batching_http.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
import shutil
import sys
import threading
import time
from pathlib import Path
import pytest
import requests
import test_utils
from model_archiver.model_archiver_config import ModelArchiverConfig
CURR_FILE_PATH = Path(__file__).parent
STATEFUL_PATH = CURR_FILE_PATH.parents[1] / "examples" / "stateful"
STATEFUL_SEQUENCE_CONTINUOUS_PATH = (
CURR_FILE_PATH.parents[1] / "examples" / "stateful" / "sequence_continuous_batching"
)
CONFIG_PROPERTIES_PATH = CURR_FILE_PATH.parents[1] / "test" / "config_ts.properties"
YAML_CONFIG = f"""
# TorchServe frontend parameters
minWorkers: 2
maxWorkers: 2
batchSize: 1
maxNumSequence: 2
sequenceMaxIdleMSec: 30000
sequenceTimeoutMSec: 60000
maxSequenceJobQueueSize: 10
sequenceBatching: true
continuousBatching: true
handler:
cache:
capacity: 4
"""
JSON_INPUT = {
"input": 3,
}
@pytest.fixture
def add_paths():
sys.path.append(STATEFUL_SEQUENCE_CONTINUOUS_PATH.as_posix())
yield
sys.path.pop()
@pytest.fixture(scope="module")
def model_name():
yield "stateful"
@pytest.fixture(scope="module")
def work_dir(tmp_path_factory, model_name):
return tmp_path_factory.mktemp(model_name)
@pytest.fixture(scope="module", name="mar_file_path")
def create_mar_file(work_dir, model_archiver, model_name, request):
mar_file_path = Path(work_dir).joinpath(model_name)
model_config_yaml = Path(work_dir) / "model-config.yaml"
model_config_yaml.write_text(YAML_CONFIG)
config = ModelArchiverConfig(
model_name=model_name,
version="1.0",
handler=(STATEFUL_SEQUENCE_CONTINUOUS_PATH / "stateful_handler.py").as_posix(),
serialized_file=(STATEFUL_PATH / "model_cnn.pt").as_posix(),
model_file=(STATEFUL_PATH / "model.py").as_posix(),
export_path=work_dir,
requirements_file=(STATEFUL_PATH / "requirements.txt").as_posix(),
runtime="python",
force=False,
config_file=model_config_yaml.as_posix(),
archive_format="no-archive",
)
model_archiver.generate_model_archive(config)
assert mar_file_path.exists()
yield mar_file_path.as_posix()
# Clean up files
shutil.rmtree(mar_file_path)
def test_infer_stateful(mar_file_path, model_store):
"""
Register the model in torchserve
"""
file_name = Path(mar_file_path).name
model_name = Path(file_name).stem
shutil.copytree(mar_file_path, Path(model_store) / model_name)
params = (
("model_name", model_name),
("url", Path(model_store) / model_name),
("initial_workers", "2"),
("synchronous", "true"),
)
test_utils.start_torchserve(
model_store=model_store, snapshot_file=CONFIG_PROPERTIES_PATH, gen_mar=False
)
try:
test_utils.reg_resp = test_utils.register_model_with_params(params)
t0 = threading.Thread(
target=__infer_stateful,
args=(
model_name,
"seq_0",
"2 6 12 20 30",
),
)
t1 = threading.Thread(
target=__infer_stateful,
args=(
model_name,
"seq_1",
"4 12 24 40 60",
),
)
t0.start()
t1.start()
t0.join()
t1.join()
finally:
test_utils.unregister_model(model_name)
# Clean up files
shutil.rmtree(Path(model_store) / model_name)
test_utils.stop_torchserve()
def test_infer_stateful_end(mar_file_path, model_store):
"""
Register the model in torchserve
"""
file_name = Path(mar_file_path).name
model_name = Path(file_name).stem
shutil.copytree(mar_file_path, Path(model_store) / model_name)
params = (
("model_name", model_name),
("url", Path(model_store) / model_name),
("initial_workers", "2"),
("synchronous", "true"),
)
test_utils.start_torchserve(
model_store=model_store, snapshot_file=CONFIG_PROPERTIES_PATH, gen_mar=False
)
try:
test_utils.reg_resp = test_utils.register_model_with_params(params)
t0 = threading.Thread(
target=__infer_stateful_end,
args=(
model_name,
"seq_0",
"2 6 12 20 20",
),
)
t1 = threading.Thread(
target=__infer_stateful,
args=(
model_name,
"seq_1",
"4 12 24 40 60",
),
)
t0.start()
t1.start()
t0.join()
t1.join()
finally:
test_utils.unregister_model(model_name)
# Clean up files
shutil.rmtree(Path(model_store) / model_name)
test_utils.stop_torchserve()
def test_infer_stateful_cancel(mar_file_path, model_store):
"""
Register the model in torchserve
"""
file_name = Path(mar_file_path).name
model_name = Path(file_name).stem
shutil.copytree(mar_file_path, Path(model_store) / model_name)
params = (
("model_name", model_name),
("url", Path(model_store) / model_name),
("initial_workers", "2"),
("synchronous", "true"),
)
test_utils.start_torchserve(
model_store=model_store, snapshot_file=CONFIG_PROPERTIES_PATH, gen_mar=False
)
try:
test_utils.reg_resp = test_utils.register_model_with_params(params)
# Open and close sesions multiple times(>maxNumSequence) to test session clean up after stream response
for _ in range(4):
with requests.post(
url=f"http://localhost:8080/predictions/{model_name}",
data=str(2).encode(),
) as response:
s_id = response.headers.get("ts_request_sequence_id")
headers = {
"ts_request_sequence_id": s_id,
}
t0 = threading.Thread(
target=__infer_stateful_cancel,
args=(
model_name,
False,
headers,
"5",
),
)
t1 = threading.Thread(
target=__infer_stateful_cancel,
args=(
model_name,
True,
headers,
"-1",
),
)
t0.start()
t1.start()
t0.join()
t1.join()
# Close session after cancellation request to free up session capacity
with requests.post(
url=f"http://localhost:8080/predictions/{model_name}",
headers=headers,
data=str(0).encode(),
) as response:
assert response.status_code == 200
finally:
test_utils.unregister_model(model_name)
# Clean up files
shutil.rmtree(Path(model_store) / model_name)
test_utils.stop_torchserve()
def test_infer_stateful_idle_timeout(mar_file_path, model_store):
file_name = Path(mar_file_path).name
model_name = Path(file_name).stem
shutil.copytree(mar_file_path, Path(model_store) / model_name)
params = (
("model_name", model_name),
("url", Path(model_store) / model_name),
("initial_workers", "2"),
("synchronous", "true"),
)
test_utils.start_torchserve(
model_store=model_store, snapshot_file=CONFIG_PROPERTIES_PATH, gen_mar=False
)
try:
test_utils.reg_resp = test_utils.register_model_with_params(params)
response = requests.post(
url=f"http://localhost:8080/predictions/{model_name}", data=str(2).encode()
)
response.raise_for_status()
# Idle for a duration greater than the max session idle time
time.sleep(31)
# Ensure that the session has been automatically cleand up
with pytest.raises(requests.exceptions.HTTPError):
response = requests.post(
url=f"http://localhost:8080/predictions/{model_name}",
headers={
"ts_request_sequence_id": response.headers.get(
"ts_request_sequence_id"
)
},
data=str(2).encode(),
)
response.raise_for_status()
finally:
test_utils.unregister_model(model_name)
# Clean up files
shutil.rmtree(Path(model_store) / model_name)
test_utils.stop_torchserve()
def test_infer_stateful_session_timeout(mar_file_path, model_store):
file_name = Path(mar_file_path).name
model_name = Path(file_name).stem
shutil.copytree(mar_file_path, Path(model_store) / model_name)
params = (
("model_name", model_name),
("url", Path(model_store) / model_name),
("initial_workers", "2"),
("synchronous", "true"),
)
test_utils.start_torchserve(
model_store=model_store, snapshot_file=CONFIG_PROPERTIES_PATH, gen_mar=False
)
try:
test_utils.reg_resp = test_utils.register_model_with_params(params)
response = requests.post(
url=f"http://localhost:8080/predictions/{model_name}", data=str(2).encode()
)
response.raise_for_status()
# Idle for a duration greater than the max session timeout
start = time.time()
while (time.time() - start) < 60:
response = requests.post(
url=f"http://localhost:8080/predictions/{model_name}",
headers={
"ts_request_sequence_id": response.headers.get(
"ts_request_sequence_id"
)
},
data=str(2).encode(),
)
response.raise_for_status()
time.sleep(2)
# Ensure that the session has been automatically cleand up
with pytest.raises(requests.exceptions.HTTPError):
response = requests.post(
url=f"http://localhost:8080/predictions/{model_name}",
headers={
"ts_request_sequence_id": response.headers.get(
"ts_request_sequence_id"
)
},
data=str(2).encode(),
)
response.raise_for_status()
finally:
test_utils.unregister_model(model_name)
# Clean up files
shutil.rmtree(Path(model_store) / model_name)
test_utils.stop_torchserve()
def __infer_stateful(model_name, sequence_id, expected):
start = True
prediction = []
for idx in range(5):
if sequence_id == "seq_0":
idx = 2 * (idx + 1)
elif sequence_id == "seq_1":
idx = 4 * (idx + 1)
if start is True:
with requests.post(
url=f"http://localhost:8080/predictions/{model_name}",
data=str(idx).encode(),
) as response:
s_id = response.headers.get("ts_request_sequence_id")
if sequence_id == "seq_0":
headers_seq_0 = {
"ts_request_sequence_id": s_id,
}
elif sequence_id == "seq_1":
headers_seq_1 = {
"ts_request_sequence_id": s_id,
}
start = False
prediction.append(response.text)
else:
with requests.post(
url=f"http://localhost:8080/predictions/{model_name}",
headers=headers_seq_0 if sequence_id == "seq_0" else headers_seq_1,
data=str(idx).encode(),
) as response:
prediction.append(response.text)
print(f"infer_stateful prediction={str(' '.join(prediction))}")
assert str(" ".join(prediction)) == expected
def __infer_stateful_end(model_name, sequence_id, expected):
prediction = []
start = True
end = False
for idx in range(5):
if idx == 4:
end = True
if sequence_id == "seq_0":
idx = 2 * (idx + 1)
elif sequence_id == "seq_1":
idx = 4 * (idx + 1)
if end is True:
idx = 0
if start is True:
with requests.post(
url=f"http://localhost:8080/predictions/{model_name}",
data=str(idx).encode(),
) as response:
s_id = response.headers.get("ts_request_sequence_id")
if sequence_id == "seq_0":
headers_seq_0 = {
"ts_request_sequence_id": s_id,
}
elif sequence_id == "seq_1":
headers_seq_1 = {
"ts_request_sequence_id": s_id,
}
start = False
prediction.append(response.text)
else:
with requests.post(
url=f"http://localhost:8080/predictions/{model_name}",
headers=headers_seq_0 if sequence_id == "seq_0" else headers_seq_1,
data=str(idx).encode(),
) as response:
prediction.append(response.text)
print(f"infer_stateful_end prediction={str(' '.join(prediction))}")
assert str(" ".join(prediction)) == expected
def __infer_stateful_cancel(model_name, is_cancel, headers, expected):
prediction = []
if is_cancel:
time.sleep(1)
with requests.post(
url=f"http://localhost:8080/predictions/{model_name}",
headers=headers,
data=str(-1).encode(),
) as response:
prediction.append(response.text)
print(f"infer_stateful_cancel prediction={str(' '.join(prediction))}")
assert str(" ".join(prediction)) == expected
else:
with requests.post(
url=f"http://localhost:8080/predictions/{model_name}",
headers=headers,
json=JSON_INPUT,
stream=True,
) as response:
assert response.headers["Transfer-Encoding"] == "chunked"
for chunk in response.iter_content(chunk_size=None):
if chunk:
prediction += [chunk.decode("utf-8")]
print(f"infer_stateful_cancel prediction={str(' '.join(prediction))}")
assert prediction[0] == expected
assert len(prediction) < 11