-
Notifications
You must be signed in to change notification settings - Fork 879
/
Copy pathtest_handler_traceback_logging.py
193 lines (142 loc) · 4.43 KB
/
test_handler_traceback_logging.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import shutil
from pathlib import Path
from unittest.mock import patch
import pytest
import test_utils
from model_archiver import ModelArchiverConfig
CURR_FILE_PATH = Path(__file__).parent
REPO_ROOT_DIR = CURR_FILE_PATH.parent.parent
MODEL_PY = """
import torch
import torch.nn as nn
class Foo(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return x
"""
HANDLER_PY = """
from typing import List, Dict, Any
from ts.context import Context
class FailingModel(object):
def __init__(self) -> None:
pass
def initialize(self, context: Context) -> None:
# Deliberate bug in handler with nested calls to test traceback logging
self.call1()
def handle(self, data: List[Dict[str, Any]], context: Context):
return None
def call1(self):
self.call2()
def call2(self):
self.call3()
def call3(self):
self.call4()
def call4(self):
self.call5()
def call5(self):
assert False
"""
MODEL_CONFIG_YAML = """
maxRetryTimeoutInSec: 300
"""
CONFIG_PROPERTIES = """
default_response_timeout=120
"""
@pytest.fixture(scope="module")
def model_name():
yield "test_model"
@pytest.fixture(scope="module")
def work_dir(tmp_path_factory, model_name):
return Path(tmp_path_factory.mktemp(model_name))
@pytest.fixture(scope="module")
def torchserve(model_store, work_dir):
test_utils.torchserve_cleanup()
config_properties_file = work_dir / "config.properties"
config_properties_file.write_text(CONFIG_PROPERTIES)
pipe = test_utils.start_torchserve(
model_store=model_store,
no_config_snapshots=True,
gen_mar=False,
snapshot_file=config_properties_file.as_posix(),
)
yield pipe
test_utils.torchserve_cleanup()
@pytest.fixture(scope="module", name="mar_file_path")
def create_mar_file(work_dir, model_archiver, model_name):
mar_file_path = work_dir.joinpath(model_name + ".mar")
model_py_file = work_dir / "model.py"
model_py_file.write_text(MODEL_PY)
model_config_yaml_file = work_dir / "model_config.yaml"
model_config_yaml_file.write_text(MODEL_CONFIG_YAML)
handler_py_file = work_dir / "handler.py"
handler_py_file.write_text(HANDLER_PY)
config = ModelArchiverConfig(
model_name=model_name,
version="1.0",
serialized_file=None,
model_file=model_py_file.as_posix(),
handler=handler_py_file.as_posix(),
extra_files=None,
export_path=work_dir,
requirements_file=None,
runtime="python",
force=False,
archive_format="default",
config_file=model_config_yaml_file.as_posix(),
)
with patch("archiver.ArgParser.export_model_args_parser", return_value=config):
model_archiver.generate_model_archive()
assert mar_file_path.exists()
yield mar_file_path.as_posix()
# Clean up files
mar_file_path.unlink(missing_ok=True)
@pytest.fixture(scope="module", name="model_name")
def register_model(mar_file_path, model_store, torchserve):
"""
Register the model in torchserve
"""
shutil.copy(mar_file_path, model_store)
file_name = Path(mar_file_path).name
model_name = Path(file_name).stem
params = (
("model_name", model_name),
("url", file_name),
("initial_workers", "1"),
("synchronous", "false"),
("batch_size", "1"),
)
test_utils.reg_resp = test_utils.register_model_with_params(params)
yield model_name, torchserve
test_utils.unregister_model(model_name)
@pytest.mark.timeout(120)
def test_handler_traceback_logging(model_name):
"""
Full circle test with torchserve
"""
model_name, pipe = model_name
traceback = [
"Traceback (most recent call last):",
"line 12, in initialize",
"self.call1()",
"line 18, in call1",
"self.call2()",
"line 21, in call2",
"self.call3()",
"line 24, in call3",
"self.call4()",
"line 27, in call4",
"self.call5()",
"line 30, in call5",
"assert False",
"AssertionError",
]
# Test traceback logging for first attempt and three retries to start worker
for _ in range(4):
logs = []
while True:
logs.append(pipe.get())
if "AssertionError" in logs[-1]:
break
for line in traceback:
assert any(line in log for log in logs)