-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path1027 Longest Arithmetic Sequence.py
58 lines (46 loc) · 1.39 KB
/
1027 Longest Arithmetic Sequence.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
#!/usr/bin/python3
"""
Given an array A of integers, return the length of the longest arithmetic
subsequence in A.
Recall that a subsequence of A is a list A[i_1], A[i_2], ..., A[i_k] with
0 <= i_1 < i_2 < ... < i_k <= A.length - 1, and that a sequence B is arithmetic
if B[i+1] - B[i] are all the same value (for 0 <= i < B.length - 1).
Example 1:
Input: [3,6,9,12]
Output: 4
Explanation:
The whole array is an arithmetic sequence with steps of length = 3.
Example 2:
Input: [9,4,7,2,10]
Output: 3
Explanation:
The longest arithmetic subsequence is [4,7,10].
Example 3:
Input: [20,1,15,3,10,5,8]
Output: 4
Explanation:
The longest arithmetic subsequence is [20,15,10,5].
Note:
2 <= A.length <= 2000
0 <= A[i] <= 10000
"""
from typing import List
from collections import defaultdict
class Solution:
def longestArithSeqLength(self, A: List[int]) -> int:
"""
Brute force O(n^2)
Let F[i][j] be the longest arith subseq ending at A[i] with step j
"""
F = defaultdict(lambda: defaultdict(lambda: 1))
for i in range(len(A)):
for j in range(i):
delta = A[i] - A[j]
F[i][delta] = F[j][delta] + 1
ret = 0
for d in F.values():
for v in d.values():
ret = max(ret, v)
return ret
if __name__ == "__main__":
assert Solution().longestArithSeqLength([20,1,15,3,10,5,8]) == 4