-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path216 Combination Sum III.py
61 lines (41 loc) · 1.21 KB
/
216 Combination Sum III.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
"""
Find all possible combinations of k numbers that add up to a number n, given that only numbers from 1 to 9 can be used
and each combination should be a unique set of numbers.
Ensure that numbers within the set are sorted in ascending order.
Example 1:
Input: k = 3, n = 7
Output:
[[1,2,4]]
Example 2:
Input: k = 3, n = 9
Output:
[[1,2,6], [1,3,5], [2,3,4]]
Author: Rajeev Ranjan
"""
class Solution:
def combinationSum3(self, k, n):
"""
Backtracking
:type k: int
:type n: int
:rtype: list[list[int]]
"""
ret = []
self.dfs(k, n, [], ret)
return ret
def dfs(self, remain_k, remain_n, cur, ret):
if remain_k == 0 and remain_n == 0:
ret.append(list(cur))
return
# check max and min reach
if remain_k * 9 < remain_n or remain_k * 1 > remain_n:
return
start = 1
if cur:
start = cur[-1] + 1 # unique
for i in xrange(start, 10):
cur.append(i)
self.dfs(remain_k - 1, remain_n - i, cur, ret)
cur.pop()
if __name__ == "__main__":
assert Solution().combinationSum3(3, 9) == [[1, 2, 6], [1, 3, 5], [2, 3, 4]]