-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path348 Design Tic-Tac-Toe.py
102 lines (86 loc) · 2.9 KB
/
348 Design Tic-Tac-Toe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
"""
Design a Tic-tac-toe game that is played between two players on a n x n grid.
You may assume the following rules:
A move is guaranteed to be valid and is placed on an empty block.
Once a winning condition is reached, no more moves is allowed.
A player who succeeds in placing n of their marks in a horizontal, vertical, or
diagonal row wins the game.
Example:
Given n = 3, assume that player 1 is "X" and player 2 is "O" in the board.
TicTacToe toe = new TicTacToe(3);
toe.move(0, 0, 1); -> Returns 0 (no one wins)
|X| | |
| | | | // Player 1 makes a move at (0, 0).
| | | |
toe.move(0, 2, 2); -> Returns 0 (no one wins)
|X| |O|
| | | | // Player 2 makes a move at (0, 2).
| | | |
toe.move(2, 2, 1); -> Returns 0 (no one wins)
|X| |O|
| | | | // Player 1 makes a move at (2, 2).
| | |X|
toe.move(1, 1, 2); -> Returns 0 (no one wins)
|X| |O|
| |O| | // Player 2 makes a move at (1, 1).
| | |X|
toe.move(2, 0, 1); -> Returns 0 (no one wins)
|X| |O|
| |O| | // Player 1 makes a move at (2, 0).
|X| |X|
toe.move(1, 0, 2); -> Returns 0 (no one wins)
|X| |O|
|O|O| | // Player 2 makes a move at (1, 0).
|X| |X|
toe.move(2, 1, 1); -> Returns 1 (player 1 wins)
|X| |O|
|O|O| | // Player 1 makes a move at (2, 1).
|X|X|X|
Follow up:
Could you do better than O(n2) per move() operation?
Author: Rajeev Ranjan
"""
class TicTacToe(object):
def __init__(self, n):
"""
Initialize your data structure here.
:type n: int
"""
self.n = n
self.rows_count = [0 for _ in xrange(n)]
self.cols_count = [0 for _ in xrange(n)]
self.diag_count = 0
self.diag_inv_count = 0
def move(self, row, col, player):
"""
Since guarantee the move is valid, only store row, col, diagonal.
1: -1
2: +1
Player {player} makes a move at ({row}, {col}).
@param row The row of the board.
@param col The column of the board.
@param player The player, can be either 1 or 2.
@return The current winning condition, can be either:
0: No one wins.
1: Player 1 wins.
2: Player 2 wins.
:type row: int
:type col: int
:type player: int
:rtype: int
"""
delta = -1 if player == 1 else 1
self.cols_count[col] += delta
self.rows_count[row] += delta
if col == row:
self.diag_count += delta
if col + row == self.n - 1:
self.diag_inv_count += delta
# since winning condition is taking up the entire row or col, the row or col must be consecutive
is_win = lambda count: delta * count == self.n
if any(map(is_win, [self.rows_count[row], self.cols_count[col], self.diag_count, self.diag_inv_count])):
return player
return 0
# Your TicTacToe object will be instantiated and called as such:
# obj = TicTacToe(n)
# param_1 = obj.move(row,col,player)