-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path454 4Sum II.py
71 lines (55 loc) · 1.58 KB
/
454 4Sum II.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
#!/usr/bin/python3
"""
Given four lists A, B, C, D of integer values, compute how many tuples (i, j,
k, l) there are such that A[i] + B[j] + C[k] + D[l] is zero.
To make problem a bit easier, all A, B, C, D have same length of N where
0 ≤ N ≤ 500. All integers are in the range of -2^28 to 2^28 - 1 and the result
is guaranteed to be at most 2^31 - 1.
Example:
Input:
A = [ 1, 2]
B = [-2,-1]
C = [-1, 2]
D = [ 0, 2]
Output:
2
Explanation:
The two tuples are:
1. (0, 0, 0, 1) -> A[0] + B[0] + C[0] + D[1] = 1 + (-2) + (-1) + 2 = 0
2. (1, 1, 0, 0) -> A[1] + B[1] + C[0] + D[0] = 2 + (-1) + (-1) + 0 = 0
Author: Rajeev Ranjan
"""
from collections import defaultdict
class Solution:
def fourSumCount(self, A, B, C, D):
"""
Brute force with map: O(N^3)
O(N^3) is pretty large, O(N^2) or O(N log N)?
O(N^2) to sum cartesian product (A, B) to construct index
similar to C, D.
Then index loop up
:type A: List[int]
:type B: List[int]
:type C: List[int]
:type D: List[int]
:rtype: int
"""
N = len(A)
AB = defaultdict(int)
CD = defaultdict(int)
for i in range(N):
for j in range(N):
AB[A[i] + B[j]] += 1
CD[C[i] + D[j]] += 1
ret = 0
# O(N^2)
for gross, count in AB.items():
target = 0 - gross
ret += count * CD[target]
return ret
if __name__ == "__main__":
A = [ 1, 2]
B = [-2,-1]
C = [-1, 2]
D = [ 0, 2]
assert Solution().fourSumCount(A, B, C, D) == 2