-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path654 Maximum Binary Tree.py
97 lines (79 loc) · 2.28 KB
/
654 Maximum Binary Tree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
#!/usr/bin/python3
"""
Given an integer array with no duplicates. A maximum tree building on this array
is defined as follow:
The root is the maximum number in the array.
The left subtree is the maximum tree constructed from left part subarray divided
by the maximum number.
The right subtree is the maximum tree constructed from right part subarray
divided by the maximum number.
Construct the maximum tree by the given array and output the root node of this
tree.
Example 1:
Input: [3,2,1,6,0,5]
Output: return the tree root node representing the following tree:
6
/ \
3 5
\ /
2 0
\
1
Note:
The size of the given array will be in the range [1,1000].
"""
# Definition for a binary tree node.
class TreeNode:
def __init__(self, x):
self.val = x
self.left = None
self.right = None
from typing import List
import heapq
class Solution:
def constructMaximumBinaryTree(self, nums: List[int]) -> TreeNode:
"""
monotonic stack - a stack to keep a decreasing subsequence from left to
right
the cur is the stk[-1]'s right
the cur's left is elements to its left not in monotonic stack
"""
stk = []
for n in nums:
cur = TreeNode(n)
while stk and stk[-1].val < cur.val:
left = stk.pop()
cur.left = left
if stk:
stk[-1].right = cur
stk.append(cur)
return stk[0]
class Solution_heap:
def constructMaximumBinaryTree(self, nums: List[int]) -> TreeNode:
"""
heap O(n lgn)
insert by index O(n lgn)
"""
if not nums:
return
h = [(-v, v) for v in nums]
idx = {
v: i
for i, v in enumerate(nums)
}
heapq.heapify(h)
root = None
while h:
_, m = heapq.heappop(h)
root = self.insert(root, m, idx)
return root
def insert(self, node, m, idx):
if not node:
return TreeNode(m)
if idx[m] < idx[node.val]:
node.left = self.insert(node.left, m, idx)
elif idx[m] > idx[node.val]:
node.right = self.insert(node.right, m, idx)
else:
raise
return node