-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path779 K-th Symbol in Grammar.py
82 lines (66 loc) · 1.75 KB
/
779 K-th Symbol in Grammar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
#!/usr/bin/python3
"""
On the first row, we write a 0. Now in every subsequent row, we look at the
previous row and replace each occurrence of 0 with 01, and each occurrence of 1
with 10.
Given row N and index K, return the K-th indexed symbol in row N. (The values of
K are 1-indexed.) (1 indexed).
Examples:
Input: N = 1, K = 1
Output: 0
Input: N = 2, K = 1
Output: 0
Input: N = 2, K = 2
Output: 1
Input: N = 4, K = 5
Output: 1
Explanation:
row 1: 0
row 2: 01
row 3: 0110
row 4: 01101001
Note:
N will be an integer in the range [1, 30].
K will be an integer in the range [1, 2^(N-1)].
"""
class Solution:
def kthGrammar(self, N: int, K: int) -> int:
"""
pattern
0
0 1
01 10
0110 1001
recursive go thorugh the pattern
"""
return self.dfs(N, K, True)
def dfs(self, N, K, not_flip):
if N == 1:
return 0 if not_flip else 1
half_l = 2 ** (N - 1) // 2
if K <= half_l:
return self.dfs(N - 1, K, not_flip)
else:
return self.dfs(N - 1, K - half_l, not not_flip)
def kthGrammar_TLE(self, N: int, K: int) -> int:
"""
Find pattern
Precedence: Logic < Bitwise < Arithmetic operator < Unary
0
0 1
01 10
0110 1001
Generating the actual string will TLE
"""
row = 0
pos = 1
for n in range(1, N):
row = (row << pos) + (~row & 2 ** pos - 1)
pos *= 2
ret = row >> pos - K & 1
return ret
if __name__ == "__main__":
assert Solution().kthGrammar(1, 1) == 0
assert Solution().kthGrammar(2, 1) == 0
assert Solution().kthGrammar(2, 2) == 1
assert Solution().kthGrammar(4, 5) == 1