-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path785 Is Graph Bipartite.py
103 lines (86 loc) · 2.71 KB
/
785 Is Graph Bipartite.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
#!/usr/bin/python3
"""
Given an undirected graph, return true if and only if it is bipartite.
Recall that a graph is bipartite if we can split it's set of nodes into two
independent subsets A and B such that every edge in the graph has one node in A
and another node in B.
The graph is given in the following form: graph[i] is a list of indexes j for
which the edge between nodes i and j exists. Each node is an integer between 0
and graph.length - 1. There are no self edges or parallel edges: graph[i] does
not contain i, and it doesn't contain any element twice.
Example 1:
Input: [[1,3], [0,2], [1,3], [0,2]]
Output: true
Explanation:
The graph looks like this:
0----1
| |
| |
3----2
We can divide the vertices into two groups: {0, 2} and {1, 3}.
Example 2:
Input: [[1,2,3], [0,2], [0,1,3], [0,2]]
Output: false
Explanation:
The graph looks like this:
0----1
| \ |
| \ |
3----2
We cannot find a way to divide the set of nodes into two independent subsets.
Note:
graph will have length in range [1, 100].
graph[i] will contain integers in range [0, graph.length - 1].
graph[i] will not contain i or duplicate values.
The graph is undirected: if any element j is in graph[i], then i will be in
graph[j].
"""
from collections import defaultdict
class Solution:
def isBipartite(self, graph: List[List[int]]) -> bool:
"""
coloring the graph
dfs coloring
"""
G = graph
color = defaultdict(int)
for k in range(len(G)):
if k not in color:
color[k] = 0
if not self.dfs(G, k, color):
return False
# if colored, don't vist
return True
def dfs(self, G, u, color):
for nbr in G[u]:
if nbr in color:
if color[nbr] == color[u]:
return False
else:
color[nbr] = 1 - color[u] # can be (0, 1) or (-1, 1)
if not self.dfs(G, nbr, color):
return False
return True
class SolutionError:
def isBipartite(self, graph: List[List[int]]) -> bool:
G = graph
A, B = set(), set()
visited = defaultdict(bool)
for k in range(len(G)):
if not visited[k]:
if not self.dfs(G, visited, k, A, B, True):
return False
return True
def dfs(self, G, visited, u, A, B, is_A):
visited[u] = True
if is_A:
A.add(u)
else:
B.add(u)
for nbr in G[u]:
if nbr in A if is_A else B:
return False
if not visited[nbr]:
if not self.dfs(G, visited, nbr, A, B, False):
return False
return True