-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path823 Binary Trees With Factors.py
50 lines (37 loc) · 1.17 KB
/
823 Binary Trees With Factors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
#!/usr/bin/python3
"""
Given an array of unique integers, each integer is strictly greater than 1.
We make a binary tree using these integers and each number may be used for any
number of times.
Each non-leaf node's value should be equal to the product of the values of it's
children.
How many binary trees can we make? Return the answer modulo 10 ** 9 + 7.
Example 1:
Input: A = [2, 4]
Output: 3
Explanation: We can make these trees: [2], [4], [4, 2, 2]
Example 2:
Input: A = [2, 4, 5, 10]
Output: 7
Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2],
[10, 2, 5], [10, 5, 2].
Note:
1 <= A.length <= 1000.
2 <= A[i] <= 10 ^ 9.
"""
from typing import List
MOD = 10 ** 9 + 7
class Solution:
def numFactoredBinaryTrees(self, A: List[int]) -> int:
"""
Let F[i] be the number of factored binary tree rooted at i
"""
A.sort()
F = {}
for i in range(len(A)):
F[A[i]] = 1
for j in range(i):
if A[i] % A[j] == 0 and A[i] // A[j] in F:
F[A[i]] += F[A[j]] * F[A[i] // A[j]] # #left * #right
F[A[i]] %= MOD
return sum(F.values()) % MOD