-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path918 Maximum Sum Circular Subarray.py
97 lines (78 loc) · 2.35 KB
/
918 Maximum Sum Circular Subarray.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
#!/usr/bin/python3
"""
Given a circular array C of integers represented by A, find the maximum possible
sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of
the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] =
C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most
once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist
i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
"""
from typing import List
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
"""
Kadane's Algorithm
Two cases:
1. normal max subarray within A
2. circular one, that both A[0] and A[n-1] is included
(A0 + A1 + .. + Ai) + (Aj + ... + An-1)
= sum(A) - (Ai+1 + ... + Aj-1)
"""
ret1 = self.max_subarray(A)
ret2 = sum(A) + self.max_subarray([-a for a in A[1:-1]]) # max negative (-1)
return max(ret1, ret2)
def max_subarray(self, A) -> int:
"""
dp[i] = A[i] + max(dp[i-1],0)
"""
mx = -float('inf')
cur = 0
for a in A:
cur = a + max(cur, 0) # RHS cur is the prev
mx = max(mx, cur)
return mx
def maxSubarraySumCircular_error(self, A: List[int]) -> int:
"""
keep a cur_sum with index, when negative, go back to 0
"""
cur = [0, None]
mx = -float('inf')
i = 0
j = 0
n = len(A)
while i < n:
cur[0] += A[i]
cur[1] = i
mx = max(mx, cur[0])
j = i + 1
while cur[0] >= 0 and j < i + n:
cur[0] += A[j % n]
mx = max(mx, cur[0])
j += 1
i = j
return mx