-
-
Notifications
You must be signed in to change notification settings - Fork 166
/
Copy pathruntime.rs
937 lines (841 loc) · 30.4 KB
/
runtime.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
// SPDX-License-Identifier: MIT OR Apache-2.0
//! UEFI runtime services.
//!
//! These services are available both before and after exiting boot
//! services. Note that various restrictions apply when calling runtime services
//! functions after exiting boot services; see the "Calling Convention" section
//! of the UEFI specification for details.
use crate::data_types::PhysicalAddress;
use crate::table::{self, Revision};
use crate::{CStr16, Error, Result, Status, StatusExt};
use core::fmt::{self, Debug, Display, Formatter};
use core::ptr::{self, NonNull};
use uefi_raw::table::boot::MemoryDescriptor;
#[cfg(feature = "alloc")]
use {
crate::mem::make_boxed,
crate::CString16,
crate::Guid,
alloc::borrow::ToOwned,
alloc::boxed::Box,
alloc::{vec, vec::Vec},
};
#[cfg(all(feature = "unstable", feature = "alloc"))]
use alloc::alloc::Global;
pub use uefi_raw::capsule::{CapsuleBlockDescriptor, CapsuleFlags, CapsuleHeader};
pub use uefi_raw::table::runtime::{
ResetType, TimeCapabilities, VariableAttributes, VariableVendor,
};
pub use uefi_raw::time::Daylight;
fn runtime_services_raw_panicking() -> NonNull<uefi_raw::table::runtime::RuntimeServices> {
let st = table::system_table_raw_panicking();
// SAFETY: valid per requirements of `set_system_table`.
let st = unsafe { st.as_ref() };
NonNull::new(st.runtime_services).expect("runtime services are not active")
}
/// Query the current time and date information.
pub fn get_time() -> Result<Time> {
let rt = runtime_services_raw_panicking();
let rt = unsafe { rt.as_ref() };
let mut time = Time::invalid();
let time_ptr: *mut Time = &mut time;
unsafe { (rt.get_time)(time_ptr.cast(), ptr::null_mut()) }.to_result_with_val(|| time)
}
/// Query the current time and date information and the RTC capabilities.
pub fn get_time_and_caps() -> Result<(Time, TimeCapabilities)> {
let rt = runtime_services_raw_panicking();
let rt = unsafe { rt.as_ref() };
let mut time = Time::invalid();
let time_ptr: *mut Time = &mut time;
let mut caps = TimeCapabilities::default();
unsafe { (rt.get_time)(time_ptr.cast(), &mut caps) }.to_result_with_val(|| (time, caps))
}
/// Sets the current local time and date information
///
/// During runtime, if a PC-AT CMOS device is present in the platform, the
/// caller must synchronize access to the device before calling `set_time`.
///
/// # Safety
///
/// Undefined behavior could happen if multiple tasks try to
/// use this function at the same time without synchronisation.
pub unsafe fn set_time(time: &Time) -> Result {
let rt = runtime_services_raw_panicking();
let rt = unsafe { rt.as_ref() };
let time: *const Time = time;
unsafe { (rt.set_time)(time.cast()) }.to_result()
}
/// Checks if a variable exists.
///
/// Returns `Ok(true)` if the variable exists, `Ok(false)` if the variable does
/// not exist, or `Err` if the existence of the variable could not be determined.
///
/// # Errors
///
/// * [`Status::DEVICE_ERROR`]: variable could not be read due to a hardware error.
/// * [`Status::SECURITY_VIOLATION`]: variable could not be read due to an
/// authentication error.
/// * [`Status::UNSUPPORTED`]: this platform does not support variable storage
/// after exiting boot services.
pub fn variable_exists(name: &CStr16, vendor: &VariableVendor) -> Result<bool> {
let rt = runtime_services_raw_panicking();
let rt = unsafe { rt.as_ref() };
let attributes = ptr::null_mut();
let data = ptr::null_mut();
let mut data_size = 0;
let status = unsafe {
(rt.get_variable)(
name.as_ptr().cast(),
&vendor.0,
attributes,
&mut data_size,
data,
)
};
match status {
// If the variable exists, the status will be BUFFER_TOO_SMALL because
// data_size is 0. Empty variables do not exist, because setting a
// variable with empty data deletes the variable. In other words, the
// status will never be SUCCESS.
Status::BUFFER_TOO_SMALL => Ok(true),
Status::NOT_FOUND => Ok(false),
_ => Err(Error::from(status)),
}
}
/// Gets the contents and attributes of a variable. The size of `buf` must be at
/// least as big as the variable's size, although it can be larger.
///
/// On success, returns a tuple containing the variable's value (a slice of
/// `buf`) and the variable's attributes.
///
/// # Errors
///
/// * [`Status::NOT_FOUND`]: variable was not found.
/// * [`Status::BUFFER_TOO_SMALL`]: `buf` is not large enough. The required size
/// will be returned in the error data.
/// * [`Status::DEVICE_ERROR`]: variable could not be read due to a hardware error.
/// * [`Status::SECURITY_VIOLATION`]: variable could not be read due to an
/// authentication error.
/// * [`Status::UNSUPPORTED`]: this platform does not support variable storage
/// after exiting boot services.
pub fn get_variable<'buf>(
name: &CStr16,
vendor: &VariableVendor,
buf: &'buf mut [u8],
) -> Result<(&'buf mut [u8], VariableAttributes), Option<usize>> {
let rt = runtime_services_raw_panicking();
let rt = unsafe { rt.as_ref() };
let mut attributes = VariableAttributes::empty();
let mut data_size = buf.len();
let status = unsafe {
(rt.get_variable)(
name.as_ptr().cast(),
&vendor.0,
&mut attributes,
&mut data_size,
buf.as_mut_ptr(),
)
};
match status {
Status::SUCCESS => Ok((&mut buf[..data_size], attributes)),
Status::BUFFER_TOO_SMALL => Err(Error::new(status, Some(data_size))),
_ => Err(Error::new(status, None)),
}
}
/// Gets the contents and attributes of a variable.
///
/// # Errors
///
/// * [`Status::NOT_FOUND`]: variable was not found.
/// * [`Status::DEVICE_ERROR`]: variable could not be read due to a hardware error.
/// * [`Status::SECURITY_VIOLATION`]: variable could not be read due to an
/// authentication error.
/// * [`Status::UNSUPPORTED`]: this platform does not support variable storage
/// after exiting boot services.
#[cfg(feature = "alloc")]
pub fn get_variable_boxed(
name: &CStr16,
vendor: &VariableVendor,
) -> Result<(Box<[u8]>, VariableAttributes)> {
let mut out_attr = VariableAttributes::empty();
let get_var = |buf| {
get_variable(name, vendor, buf).map(|(val, attr)| {
// `make_boxed` expects only a DST value to be returned (`val` in
// this case), so smuggle the `attr` value out via a separate
// variable.
out_attr = attr;
val
})
};
#[cfg(not(feature = "unstable"))]
{
make_boxed(get_var).map(|val| (val, out_attr))
}
#[cfg(feature = "unstable")]
{
make_boxed(get_var, Global).map(|val| (val, out_attr))
}
}
/// Gets each variable key (name and vendor) one at a time.
///
/// This is used to iterate over variable keys. See [`variable_keys`] for a more
/// convenient interface that requires the `alloc` feature.
///
/// To get the first variable key, `name` must be initialized to start with a
/// null character. The `vendor` value is arbitrary. On success, the first
/// variable's name and vendor will be written out to `name` and `vendor`. Keep
/// calling `get_next_variable_key` with the same `name` and `vendor` references
/// to get the remaining variable keys.
///
/// All variable names should be valid strings, but this may not be enforced by
/// firmware. To convert to a string, truncate at the first null and call
/// [`CStr16::from_u16_with_nul`].
///
/// # Errors
///
/// * [`Status::NOT_FOUND`]: indicates end of iteration, the last variable keys
/// was retrieved by the previous call to `get_next_variable_key`.
/// * [`Status::BUFFER_TOO_SMALL`]: `name` is not large enough. The required
/// size (in `u16` characters, not bytes) will be returned in the error data.
/// * [`Status::INVALID_PARAMETER`]: `name` does not contain a null character, or
/// the `name` and `vendor` are not an existing variable.
/// * [`Status::DEVICE_ERROR`]: variable could not be read due to a hardware error.
/// * [`Status::UNSUPPORTED`]: this platform does not support variable storage
/// after exiting boot services.
pub fn get_next_variable_key(
name: &mut [u16],
vendor: &mut VariableVendor,
) -> Result<(), Option<usize>> {
let rt = runtime_services_raw_panicking();
let rt = unsafe { rt.as_ref() };
let mut name_size_in_bytes = size_of_val(name);
let status = unsafe {
(rt.get_next_variable_name)(&mut name_size_in_bytes, name.as_mut_ptr(), &mut vendor.0)
};
match status {
Status::SUCCESS => Ok(()),
Status::BUFFER_TOO_SMALL => Err(Error::new(
status,
Some(name_size_in_bytes / size_of::<u16>()),
)),
_ => Err(Error::new(status, None)),
}
}
/// Get an iterator over all UEFI variables.
///
/// See [`VariableKeys`] for details.
#[cfg(feature = "alloc")]
#[must_use]
pub fn variable_keys() -> VariableKeys {
VariableKeys::new()
}
/// Iterator over all UEFI variables.
///
/// Each iteration yields a `Result<`[`VariableKey`]`>`. Error values:
///
/// * [`Status::DEVICE_ERROR`]: variable could not be read due to a hardware error.
/// * [`Status::UNSUPPORTED`]: this platform does not support variable storage
/// after exiting boot services.
#[cfg(feature = "alloc")]
#[derive(Debug)]
pub struct VariableKeys {
name: Vec<u16>,
vendor: VariableVendor,
is_done: bool,
}
#[cfg(feature = "alloc")]
impl VariableKeys {
fn new() -> Self {
// Create a name buffer with a large default size and zero
// initialize it. A Toshiba Satellite Pro R50-B-12P was found
// to not correctly update the VariableNameSize passed into
// GetNextVariableName and starting with a large buffer works
// around this issue.
let name = vec![0; 512];
Self {
name,
// The initial vendor GUID is arbitrary.
vendor: VariableVendor(Guid::default()),
is_done: false,
}
}
}
#[cfg(feature = "alloc")]
impl Iterator for VariableKeys {
type Item = Result<VariableKey>;
fn next(&mut self) -> Option<Result<VariableKey>> {
if self.is_done {
return None;
}
let mut result = get_next_variable_key(&mut self.name, &mut self.vendor);
// If the name buffer was too small, resize it to be big enough and call
// `get_next_variable_key` again.
if let Err(err) = &result {
if let Some(required_size) = err.data() {
self.name.resize(*required_size, 0u16);
result = get_next_variable_key(&mut self.name, &mut self.vendor);
}
}
match result {
Ok(()) => {
// Convert the name to a `CStr16`, yielding an error if invalid.
let Ok(name) = CStr16::from_u16_until_nul(&self.name) else {
return Some(Err(Status::UNSUPPORTED.into()));
};
Some(Ok(VariableKey {
name: name.to_owned(),
vendor: self.vendor,
}))
}
Err(err) => {
if err.status() == Status::NOT_FOUND {
// This status indicates the end of the list. The final variable
// has already been yielded at this point, so return `None`.
self.is_done = true;
None
} else {
// Return the error and end iteration.
self.is_done = true;
Some(Err(err.to_err_without_payload()))
}
}
}
}
}
/// Sets the value of a variable. This can be used to create a new variable,
/// update an existing variable, or (when the size of `data` is zero)
/// delete a variable.
///
/// # Warnings
///
/// The [`Status::WARN_RESET_REQUIRED`] warning will be returned when using
/// this function to transition the Secure Boot mode to setup mode or audit
/// mode if the firmware requires a reboot for that operation.
///
/// # Errors
///
/// * [`Status::INVALID_PARAMETER`]: invalid attributes, name, or vendor.
/// * [`Status::OUT_OF_RESOURCES`]: not enough storage is available to hold
/// the variable.
/// * [`Status::WRITE_PROTECTED`]: variable is read-only.
/// * [`Status::SECURITY_VIOLATION`]: variable could not be written due to an
/// authentication error.
/// * [`Status::NOT_FOUND`]: attempted to update a non-existent variable.
/// * [`Status::UNSUPPORTED`]: this platform does not support variable storage
/// after exiting boot services.
pub fn set_variable(
name: &CStr16,
vendor: &VariableVendor,
attributes: VariableAttributes,
data: &[u8],
) -> Result {
let rt = runtime_services_raw_panicking();
let rt = unsafe { rt.as_ref() };
unsafe {
(rt.set_variable)(
name.as_ptr().cast(),
&vendor.0,
attributes,
data.len(),
data.as_ptr(),
)
.to_result()
}
}
/// Deletes a UEFI variable.
///
/// # Errors
///
/// * [`Status::INVALID_PARAMETER`]: invalid name or vendor.
/// * [`Status::WRITE_PROTECTED`]: variable is read-only.
/// * [`Status::SECURITY_VIOLATION`]: variable could not be deleted due to an
/// authentication error.
/// * [`Status::NOT_FOUND`]: attempted to delete a non-existent variable.
/// * [`Status::UNSUPPORTED`]: this platform does not support variable storage
/// after exiting boot services.
pub fn delete_variable(name: &CStr16, vendor: &VariableVendor) -> Result {
set_variable(name, vendor, VariableAttributes::empty(), &[])
}
/// Get information about UEFI variable storage space for the type
/// of variable specified in `attributes`.
///
/// This operation is only supported starting with UEFI 2.0.
///
/// See [`VariableStorageInfo`] for details of the information returned.
///
/// # Errors
///
/// * [`Status::INVALID_PARAMETER`]: invalid combination of variable attributes.
/// * [`Status::UNSUPPORTED`]: the combination of variable attributes is not
/// supported on this platform, or the UEFI version is less than 2.0.
pub fn query_variable_info(attributes: VariableAttributes) -> Result<VariableStorageInfo> {
let rt = runtime_services_raw_panicking();
let rt = unsafe { rt.as_ref() };
if rt.header.revision < Revision::EFI_2_00 {
return Err(Status::UNSUPPORTED.into());
}
let mut info = VariableStorageInfo::default();
unsafe {
(rt.query_variable_info)(
attributes,
&mut info.maximum_variable_storage_size,
&mut info.remaining_variable_storage_size,
&mut info.maximum_variable_size,
)
.to_result_with_val(|| info)
}
}
/// Passes capsules to the firmware.
///
/// Capsules are most commonly used to update system firmware.
///
/// # Errors
///
/// * [`Status::INVALID_PARAMETER`]: zero capsules were provided, or the
/// capsules are invalid.
/// * [`Status::DEVICE_ERROR`]: the capsule update was started but failed to a
/// device error.
/// * [`Status::OUT_OF_RESOURCES`]: before exiting boot services, indicates the
/// capsule is compatible with the platform but there are insufficient
/// resources to complete the update. After exiting boot services, indicates
/// the capsule is compatible with the platform but can only be processed
/// before exiting boot services.
/// * [`Status::UNSUPPORTED`]: this platform does not support capsule updates
/// after exiting boot services.
pub fn update_capsule(
capsule_header_array: &[&CapsuleHeader],
capsule_block_descriptors: &[CapsuleBlockDescriptor],
) -> Result {
let rt = runtime_services_raw_panicking();
let rt = unsafe { rt.as_ref() };
unsafe {
(rt.update_capsule)(
capsule_header_array.as_ptr().cast(),
capsule_header_array.len(),
capsule_block_descriptors.as_ptr() as PhysicalAddress,
)
.to_result()
}
}
/// Tests whether a capsule or capsules can be updated via [`update_capsule`].
///
/// See [`CapsuleInfo`] for details of the information returned.
///
/// # Errors
///
/// * [`Status::OUT_OF_RESOURCES`]: before exiting boot services, indicates the
/// capsule is compatible with the platform but there are insufficient
/// resources to complete the update. After exiting boot services, indicates
/// the capsule is compatible with the platform but can only be processed
/// before exiting boot services.
/// * [`Status::UNSUPPORTED`]: either the capsule type is not supported by this
/// platform, or the platform does not support capsule updates after exiting
/// boot services.
pub fn query_capsule_capabilities(capsule_header_array: &[&CapsuleHeader]) -> Result<CapsuleInfo> {
let rt = runtime_services_raw_panicking();
let rt = unsafe { rt.as_ref() };
let mut info = CapsuleInfo::default();
unsafe {
(rt.query_capsule_capabilities)(
capsule_header_array.as_ptr().cast(),
capsule_header_array.len(),
&mut info.maximum_capsule_size,
&mut info.reset_type,
)
.to_result_with_val(|| info)
}
}
/// Resets the computer.
///
/// See [`ResetType`] for details of the various reset types.
///
/// For a normal reset the value of `status` should be
/// [`Status::SUCCESS`]. Otherwise, an error code can be used.
///
/// The `data` arg is usually `None`. Otherwise, it must contain a UCS-2
/// null-terminated string followed by additional binary data. For
/// [`ResetType::PLATFORM_SPECIFIC`], the binary data must be a vendor-specific
/// [`Guid`] that indicates the type of reset to perform.
///
/// This function never returns.
pub fn reset(reset_type: ResetType, status: Status, data: Option<&[u8]>) -> ! {
let rt = runtime_services_raw_panicking();
let rt = unsafe { rt.as_ref() };
let (size, data) = data
.map(|data| (data.len(), data.as_ptr()))
.unwrap_or((0, ptr::null()));
unsafe { (rt.reset_system)(reset_type, status, size, data) }
}
/// Changes the runtime addressing mode of EFI firmware from physical to
/// virtual. It is up to the caller to translate the old system table address
/// to a new virtual address and provide it for this function.
///
/// If successful, this function will call [`set_system_table`] with
/// `new_system_table_virtual_addr`.
///
/// [`set_system_table`]: table::set_system_table
///
/// # Safety
///
/// The caller must ensure the memory map is valid.
///
/// # Errors
///
/// * [`Status::UNSUPPORTED`]: either boot services haven't been exited, the
/// firmware's addressing mode is already virtual, or the firmware does not
/// support this operation.
/// * [`Status::NO_MAPPING`]: `map` is missing a required range.
/// * [`Status::NOT_FOUND`]: `map` contains an address that is not in the
/// current memory map.
pub unsafe fn set_virtual_address_map(
map: &mut [MemoryDescriptor],
new_system_table_virtual_addr: *const uefi_raw::table::system::SystemTable,
) -> Result {
let rt = runtime_services_raw_panicking();
let rt = unsafe { rt.as_ref() };
// Unsafe Code Guidelines guarantees that there is no padding in an array or a slice
// between its elements if the element type is `repr(C)`, which is our case.
//
// See https://rust-lang.github.io/unsafe-code-guidelines/layout/arrays-and-slices.html
let map_size = size_of_val(map);
let entry_size = size_of::<MemoryDescriptor>();
let entry_version = MemoryDescriptor::VERSION;
let map_ptr = map.as_mut_ptr();
unsafe { (rt.set_virtual_address_map)(map_size, entry_size, entry_version, map_ptr) }
.to_result()?;
// Update the global system table pointer.
unsafe { table::set_system_table(new_system_table_virtual_addr) };
Ok(())
}
/// Date and time representation.
#[derive(Copy, Clone, Eq, PartialEq)]
#[repr(transparent)]
pub struct Time(uefi_raw::time::Time);
/// Input parameters for [`Time::new`].
#[derive(Copy, Clone, Debug)]
pub struct TimeParams {
/// Year in the range `1900..=9999`.
pub year: u16,
/// Month in the range `1..=12`.
pub month: u8,
/// Day in the range `1..=31`.
pub day: u8,
/// Hour in the range `0.=23`.
pub hour: u8,
/// Minute in the range `0..=59`.
pub minute: u8,
/// Second in the range `0..=59`.
pub second: u8,
/// Fraction of a second represented as nanoseconds in the range
/// `0..=999_999_999`.
pub nanosecond: u32,
/// Offset in minutes from UTC in the range `-1440..=1440`, or
/// local time if `None`.
pub time_zone: Option<i16>,
/// Daylight savings time information.
pub daylight: Daylight,
}
/// Error returned by [`Time`] methods. A bool value of `true` means
/// the specified field is outside its valid range.
#[allow(missing_docs)]
#[derive(Clone, Copy, Debug, Default, PartialEq, Eq)]
pub struct TimeError {
pub year: bool,
pub month: bool,
pub day: bool,
pub hour: bool,
pub minute: bool,
pub second: bool,
pub nanosecond: bool,
pub timezone: bool,
pub daylight: bool,
}
impl core::error::Error for TimeError {}
impl Display for TimeError {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
if self.year {
writeln!(f, "year not within `1900..=9999`")?;
}
if self.month {
writeln!(f, "month not within `1..=12")?;
}
if self.day {
writeln!(f, "day not within `1..=31`")?;
}
if self.hour {
writeln!(f, "hour not within `0..=23`")?;
}
if self.minute {
writeln!(f, "minute not within `0..=59`")?;
}
if self.second {
writeln!(f, "second not within `0..=59`")?;
}
if self.nanosecond {
writeln!(f, "nanosecond not within `0..=999_999_999`")?;
}
if self.timezone {
writeln!(
f,
"time_zone not `Time::UNSPECIFIED_TIMEZONE` nor within `-1440..=1440`"
)?;
}
if self.daylight {
writeln!(f, "unknown bits set for daylight")?;
}
Ok(())
}
}
impl Time {
/// Unspecified Timezone/local time.
const UNSPECIFIED_TIMEZONE: i16 = uefi_raw::time::Time::UNSPECIFIED_TIMEZONE;
/// Create a `Time` value. If a field is not in the valid range,
/// [`TimeError`] is returned.
pub fn new(params: TimeParams) -> core::result::Result<Self, TimeError> {
let time = Self(uefi_raw::time::Time {
year: params.year,
month: params.month,
day: params.day,
hour: params.hour,
minute: params.minute,
second: params.second,
pad1: 0,
nanosecond: params.nanosecond,
time_zone: params.time_zone.unwrap_or(Self::UNSPECIFIED_TIMEZONE),
daylight: params.daylight,
pad2: 0,
});
time.is_valid().map(|_| time)
}
/// Create an invalid `Time` with all fields set to zero. This can
/// be used with [`FileInfo`] to indicate a field should not be
/// updated when calling [`File::set_info`].
///
/// [`FileInfo`]: uefi::proto::media::file::FileInfo
/// [`File::set_info`]: uefi::proto::media::file::File::set_info
#[must_use]
pub const fn invalid() -> Self {
Self(uefi_raw::time::Time::invalid())
}
/// `Ok()` if all fields are within valid ranges, `Err(TimeError)` otherwise.
pub fn is_valid(&self) -> core::result::Result<(), TimeError> {
let mut err = TimeError::default();
if !(1900..=9999).contains(&self.year()) {
err.year = true;
}
if !(1..=12).contains(&self.month()) {
err.month = true;
}
if !(1..=31).contains(&self.day()) {
err.day = true;
}
if self.hour() > 23 {
err.hour = true;
}
if self.minute() > 59 {
err.minute = true;
}
if self.second() > 59 {
err.second = true;
}
if self.nanosecond() > 999_999_999 {
err.nanosecond = true;
}
if self.time_zone().is_some() && !((-1440..=1440).contains(&self.time_zone().unwrap())) {
err.timezone = true;
}
// All fields are false, i.e., within their valid range.
if err == TimeError::default() {
Ok(())
} else {
Err(err)
}
}
/// Query the year.
#[must_use]
pub const fn year(&self) -> u16 {
self.0.year
}
/// Query the month.
#[must_use]
pub const fn month(&self) -> u8 {
self.0.month
}
/// Query the day.
#[must_use]
pub const fn day(&self) -> u8 {
self.0.day
}
/// Query the hour.
#[must_use]
pub const fn hour(&self) -> u8 {
self.0.hour
}
/// Query the minute.
#[must_use]
pub const fn minute(&self) -> u8 {
self.0.minute
}
/// Query the second.
#[must_use]
pub const fn second(&self) -> u8 {
self.0.second
}
/// Query the nanosecond.
#[must_use]
pub const fn nanosecond(&self) -> u32 {
self.0.nanosecond
}
/// Query the time offset in minutes from UTC, or None if using local time.
#[must_use]
pub const fn time_zone(&self) -> Option<i16> {
if self.0.time_zone == Self::UNSPECIFIED_TIMEZONE {
None
} else {
Some(self.0.time_zone)
}
}
/// Query the daylight savings time information.
#[must_use]
pub const fn daylight(&self) -> Daylight {
self.0.daylight
}
}
impl Debug for Time {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
write!(
f,
"{:04}-{:02}-{:02} ",
self.0.year, self.0.month, self.0.day
)?;
write!(
f,
"{:02}:{:02}:{:02}.{:09}",
self.0.hour, self.0.minute, self.0.second, self.0.nanosecond
)?;
if self.0.time_zone == Self::UNSPECIFIED_TIMEZONE {
write!(f, ", Timezone=local")?;
} else {
write!(f, ", Timezone={}", self.0.time_zone)?;
}
write!(f, ", Daylight={:?}", self.0.daylight)
}
}
impl Display for Time {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
write!(f, "{}", self.0)
}
}
/// Error returned from failing to convert a byte slice into a [`Time`].
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum TimeByteConversionError {
/// One or more fields of the converted [`Time`] is invalid.
InvalidFields(TimeError),
/// The byte slice is not large enough to hold a [`Time`].
InvalidSize,
}
impl Display for TimeByteConversionError {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
match self {
Self::InvalidFields(error) => write!(f, "{error}"),
Self::InvalidSize => write!(
f,
"the byte slice is not large enough to hold a Time struct"
),
}
}
}
impl TryFrom<&[u8]> for Time {
type Error = TimeByteConversionError;
fn try_from(bytes: &[u8]) -> core::result::Result<Self, Self::Error> {
if size_of::<Self>() <= bytes.len() {
let year = u16::from_le_bytes(bytes[0..2].try_into().unwrap());
let month = bytes[2];
let day = bytes[3];
let hour = bytes[4];
let minute = bytes[5];
let second = bytes[6];
let nanosecond = u32::from_le_bytes(bytes[8..12].try_into().unwrap());
let time_zone = match i16::from_le_bytes(bytes[12..14].try_into().unwrap()) {
Self::UNSPECIFIED_TIMEZONE => None,
num => Some(num),
};
let daylight = Daylight::from_bits(bytes[14]).ok_or(
TimeByteConversionError::InvalidFields(TimeError {
daylight: true,
..Default::default()
}),
)?;
let time_params = TimeParams {
year,
month,
day,
hour,
minute,
second,
nanosecond,
time_zone,
daylight,
};
Self::new(time_params).map_err(TimeByteConversionError::InvalidFields)
} else {
Err(TimeByteConversionError::InvalidSize)
}
}
}
/// Unique key for a variable.
#[cfg(feature = "alloc")]
#[derive(Clone, Debug, Eq, PartialEq, Ord, PartialOrd, Hash)]
pub struct VariableKey {
/// Unique identifier for the vendor.
pub vendor: VariableVendor,
/// Name of the variable, unique with the vendor namespace.
pub name: CString16,
}
#[cfg(feature = "alloc")]
impl VariableKey {
/// Name of the variable.
#[deprecated = "Use the VariableKey.name field instead"]
#[allow(clippy::missing_const_for_fn)] // false-positive since Rust 1.86
pub fn name(&self) -> core::result::Result<&CStr16, crate::data_types::FromSliceWithNulError> {
Ok(&self.name)
}
}
#[cfg(feature = "alloc")]
impl Display for VariableKey {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
write!(f, "VariableKey {{ name: \"{}\", vendor: ", self.name)?;
if self.vendor == VariableVendor::GLOBAL_VARIABLE {
write!(f, "GLOBAL_VARIABLE")?;
} else {
write!(f, "{}", self.vendor.0)?;
}
write!(f, " }}")
}
}
/// Information about UEFI variable storage space returned by
/// [`query_variable_info`]. Note that the data here is
/// limited to a specific type of variable (as specified by the
/// `attributes` argument to `query_variable_info`).
#[derive(Clone, Copy, Debug, Default, Eq, PartialEq)]
pub struct VariableStorageInfo {
/// Maximum size in bytes of the storage space available for
/// variables of the specified type.
pub maximum_variable_storage_size: u64,
/// Remaining size in bytes of the storage space available for
/// variables of the specified type.
pub remaining_variable_storage_size: u64,
/// Maximum size of an individual variable of the specified type.
pub maximum_variable_size: u64,
}
/// Information about UEFI variable storage space returned by
/// [`query_capsule_capabilities`].
#[derive(Clone, Copy, Debug, Default, Eq, PartialEq)]
pub struct CapsuleInfo {
/// The maximum size in bytes that [`update_capsule`]
/// can support as input. Note that the size of an update capsule is composed of
/// all [`CapsuleHeader`]s and [CapsuleBlockDescriptor]s.
pub maximum_capsule_size: u64,
/// The type of reset required for the capsule update.
pub reset_type: ResetType,
}