forked from zero-to-mastery/JS_Fun_Practice
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathJMCrawf_Solution.js
182 lines (142 loc) · 6.7 KB
/
JMCrawf_Solution.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
// Write a function identity that takes an argument and returns that argument
const identity = (x) => x
// Write a binary function addb that takes two numbers and returns their sum
const addb = (a, b) => a + b
// Write a binary function subb that takes two numbers and returns their difference
const subb = (a, b) => a - b
// Write a binary function mulb that takes two numbers and returns their product
const mulb = (a, b) => a * b
// Write a binary function minb that takes two numbers and returns the smaller one
const minb = (a, b) => (a < b ? a : b)
// Write a binary function maxb that takes two numbers and returns the larger one
const maxb = (a, b) => (a > b ? a : b)
// Write a function add that is generalized for any amount of arguments
const add = (...nums) => nums.reduce((a, b) => a + b)
// Write a function sub that is generalized for any amount of arguments
const sub = (...nums) => nums.reduce((a, b) => a - b)
// Write a function mul that is generalized for any amount of arguments
const mul = (...nums) => nums.reduce((a, b) => a * b)
// Write a function min that is generalized for any amount of arguments
const min = (...nums) => Math.min(...nums)
// Write a function max that is generalized for any amount of arguments
const max = (...nums) => Math.max(...nums)
// Write a function addRecurse that is the generalized add function but uses recursion
const addRecurse = (...nums) => nums.length===1 ? nums[0] : nums.pop() + addRecurse(...nums)
// Write a function mulRecurse that is the generalized mul function but uses recursion
const mulRecurse = (...nums) => nums.length===1 ? nums[0] : nums.pop() * mulRecurse(...nums)
// Write a function minRecurse that is the generalized min function but uses recursion
const minRecurse = (first, ...nums) => {
let [ second, ...rest ] = nums
if(!rest.length) {
return first < second ? first : second
}
return first < second ? minRecurse(first, ...rest) : minRecurse(second, ...rest)
}
// Write a function maxRecurse that is the generalized max function but uses recursion
const maxRecurse = (first, ...nums) => {
let [ second, ...rest ] = nums
if(!rest.length) {
return first > second ? first : second
}
return first > second ? maxRecurse(first, ...rest) : maxRecurse(second, ...rest)
}
// Write a function not that takes a function and returns the negation of its result
const not = func => (...args) => {return !(func(...args))}
// Write a function acc that takes a function and an initial value and returns a function that runs the initial function on each argument, accumulating the result
const acc = (f, initVal) => {
const inside = (...nums) => {
return nums.reduce((acc, num) => {
return f(acc,num);
}, initVal);
}
return inside;
}
// Write a function accPartial that takes in a function, a start index, and an end index, and returns a function that accumulates a subset of its arguments by applying the given function to all elements between start and end.
const accPartial = (f, start, end) => {
const inside = (...nums) => {
let subset = nums.slice(start,end).reduce((acc, num) => {
return f(acc,num);
});
nums.splice(start, end-start, subset)
return nums
}
return inside;
}
// Write a function accRecurse that does what acc does but uses recursion
const accRecurse = (func, initial) => {
const inside = (first, ...nums) => {
first = func(initial, first);
const recurse = (first, ...nums) => {
let [ second, ...rest ] = nums;
if(!rest.length) {
return func(first, second);
}
return recurse(func(first,second), ...rest);
}
return recurse(first,...nums);
}
return inside;
}
// Write a function fill that takes a number and returns an array with that many numbers equal to the given number
const fill = (num) => {
let arr = []
for(let i=0; i<num; i++) arr.push(num)
return arr
}
// Write a function fillRecurse that does what fill does but uses recursion
const fillRecurse = (num, arr = []) => {
if(arr.length === num) return arr
arr.push(num)
return fillRecurse(num, arr)
}
// Write a function set that is given a list of arguments and returns an array with all duplicates removed
const set = (...args) => [...new Set(args)]
// Write a function identityf that takes an argument and returns a function that returns that argument
const identityf = (args) => {
return function() {
return args
}
}
// Write a function addf that adds from two invocations
const addf = (a) => (b) => a+b
// Write a function liftf that takes a binary function, and makes it callable with two invocations
const liftf = (f) => (a) => (b) => f(a,b)
// Write a pure function pure that is a wrapper arround the impure function impure
const pure = (x, y) => {
function impure(x) {
y++;
z = x * y;
}
impure(x)
return [y, z]
}
// Write a function curryb that takes a binary function and an argument, and returns a function that can take a second argument
const curryb = (binary, a) => {
return function(b){
return binary(a, b);
}
}
// Write a function curry that is generalized for any amount of arguments
const curry = (func, ...outer) => {
return function(...inner){
return func(...outer, ...inner);
}
}
// Without writing any new functions, show multiple ways to create the inc function
const inc = (x) => add(x, 1);
const inc2 = (x) => addb(x, 1);
// Write a function twiceUnary that takes a binary function and returns a unary function that passes its argument to the binary function twice
const twiceUnary = binary => a => binary(a,a);
// Use the function twiceUnary to create the doubl function
const doubl = (x) => twiceUnary(addb)(x)
// Use the function twiceUnary to create the square function
const square = (x) => twiceUnary(mulb)(x)
// Write a function twice that is generalized for any amount of arguments
const twice = x => (...args) => x(...args, ...args)
// Write a function reverseb that reverses the arguments of a binary function
const reverseb = binary => (a, b) => binary(b,a)
// Write a function reverse that is generalized for any amount of arguments
const reverse = func => (...args) => func(...args.reverse())
// Write a function composeuTwo that takes two unary functions and returns a unary function that calls them both
const composeuTwo = (unary1, unary2) => x => unary2(unary1(x))
module.exports = { identity, addb, subb, mulb, minb, maxb, add, sub, mul, min, max, addRecurse, mulRecurse, minRecurse, maxRecurse, not, acc, accPartial, accRecurse, fill, fillRecurse, set, identityf, addf, liftf, pure, curryb, curry , inc, twiceUnary, doubl, square , twice, reverseb, reverse, composeuTwo};