forked from zero-to-mastery/JS_Fun_Practice
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRNtaate_JS_fun_solutions.js
382 lines (314 loc) · 8.49 KB
/
RNtaate_JS_fun_solutions.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
// Write a function identity that takes an argument and returns that argument
const identity = (x) => ( x )
// Write a binary function addb that takes two numbers and returns their sum
const addb = ( a, b ) => {
if(!b) return a
return ( a + b)
};
//Write a binary function subb that takes two numbers and returns their difference
const subb = (a, b) => {
if(!b) return a
return ( a - b);
}
// Write a binary function mulb that takes two numbers and returns their product
const mulb = (a, b) => {
if(!b) return a
return ( a * b )
}
// Write a binary function minb that takes two numbers and returns the smaller one
const minb = ( a, b ) => ( a <= b ? a : b)
// Write a binary function maxb that takes two numbers and returns the larger one
const maxb = (a, b) => ( a >= b ? a : b)
// Write a function add that is generalized for any amount of arguments
const add = (...nums) => {
if(!nums.length){
return 'No arguments provided'
}
return nums.reduce(addb);
}
// Write a function sub that is generalized for any amount of arguments
const sub = (...nums) => {
if(!nums.length){
return 'No arguments provided'
}
return nums.reduce(subb);
}
// Write a function mul that is generalized for any amount of arguments
const mul = (...nums) => {
if(!nums.length){
return 'No arguments provided'
}
return nums.reduce(mulb);
}
// Write a function min that is generalized for any amount of arguments
const min = (...nums) => {
if(!nums.length){
return 'No arguments provided'
}
return nums.reduce(minb);
}
// Write a function max that is generalized for any amount of arguments
const max = (...nums) => {
if (!nums.length){
return "No arguments provided"
}
return nums.reduce(maxb)
}
const addRecurse = (...nums) => {
if(!nums.length){
return "No arguments provided"
}
if(nums.length == 1){
return addb(nums[0])
}
let number = nums.pop()
return addb(number, addRecurse(...nums))
}
// Write a function mulRecurse that is the generalized mul function but uses recursion
const mulRecurse = (...nums) => {
if(!nums.length) {
return "No arguments provided"
}
if(nums.length == 1){
return mulb(nums[0])
}
let number = nums.pop()
return mulb(number, mulRecurse(...nums))
}
// Write a function minRecurse that is the generalized min function but uses recursion
const minRecurse = (...nums) => {
if(!nums.length) {
return "No arguments provided"
}
if(nums.length == 1) {
return nums[0]
}
let number = nums.pop() // making sure that pop() happens once.
return number <= minRecurse(...nums) ? number : minRecurse(...nums)
}
// Write a function maxRecurse that is the generalized max function but uses recursion
const maxRecurse = (...nums) => {
if(!nums.length) {
return "No arguments provided"
}
if(nums.length == 1) {
return nums[0]
}
let number = nums.pop();
return number >= maxRecurse(...nums) ? number : maxRecurse(...nums)
}
// Write a function not that takes a function and returns the negation of its result
const not = (func) => (!func);
// Write a function acc that takes a function and an initial value and returns a function that runs the initial function on each argument, accumulating the result
const acc = (func, initial = 0) => {
const argsReceiver = (...nums) => {
if(!nums.length) return "No arguments provided"
let newNums = nums.slice(initial);
return newNums.reduce(func);
}
return argsReceiver;
}
// Write a function accPartial that takes in a function, a start index, and an end index, and returns a function that accumulates a subset of its arguments by applying the given function to all elements between start and end.
const accPartial = (func, start, end) => {
const argsReceiver = (...nums) => {
if(!nums.length) return "No arguments provided";
let newNums = nums.slice(start, end);
let number = func(...newNums)
nums.splice(start, end - 1, number);
return nums;
}
return argsReceiver;
}
// Write a function accRecurse that does what acc does but uses recursion
const accRecurse = (func, initial) => {
const argsReceiver = (...nums) => {
/** NOTE: The function funcRecurse relies on the fact that the provided argument func takes 1 or 2 parameters. i.e, it is a binary function as this test calls it. */
const funcRecurse = (pos) => {
if (pos == nums.length) {
return
}
if(pos == nums.length - 1) {
return func(nums[pos])
}
return func(nums[pos], funcRecurse(pos + 1))
}
return funcRecurse(initial)
}
return argsReceiver;
}
// Write a function fill that takes a number and returns an array with that many numbers equal to the given number
const fill = (num) => {
let array = [];
for ( let i = 0; i < num; i += 1) {
array.push(num)
}
return array;
}
// Write a function fillRecurse that does what fill does but uses recursion
const fillRecurse = (num, counter = 1) => {
if (counter == num) return [num]
return ([num].concat(fillRecurse(num, counter + 1)))
}
// Write a function set that is given a list of arguments and returns an array with all duplicates removed
const set = (...args) => {
let obj = {}
args.forEach( el => {
if(!obj[el]){
obj[el] = el
}
})
return Object.values(obj)
}
// Write a function identityf that takes an argument and returns a function that returns that argument
const identityf = (x) => {
return (() => (x));
}
//Write a function addf that adds from two invocations
const addf = (a) => {
const innerAdd = (b) => {
return (a + b)
}
return innerAdd;
}
// Write a function liftf that takes a binary function, and makes it callable with two invocations
const liftf = (funcb) => {
const innerLift = (a) => {
const innerLiftB = (b) => {
return funcb(a, b);
}
return innerLiftB;
}
return innerLift;
}
// Write a pure function pure that is a wrapper arround the impure function impure
const pure = (x, y) => {
let z;
function impure(innerx) {
y ++;
z = innerx * y
}
impure(x)
return [y, z]
}
// Write a function curryb that takes a binary function and an argument, and returns a function that can take a second argument
const curryb = (binary, a) => {
const innerfunc = (innerarg) => {
return binary(a, innerarg);
}
return innerfunc;
}
// Write a function curry that is generalized for any amount of arguments
const curry = (func, ...outer) => {
const innerfunc = (...innerargs) => {
let finalArgList = outer.concat(innerargs);
return func(...finalArgList);
}
return innerfunc;
}
// Without writting any new functions, show multiple ways to create the inc function
const inc = (x) => ( ++x ); // The plus symbols should come before not after x
// Write a function twiceUnary that takes a binary function and returns a unary function that passes its argument to the binary function twice
const twiceUnary = (binaryfunc) => {
const innerFunc = (arg) => {
return binaryfunc(arg, arg);
}
return innerFunc;
}
// Use the function twiceUnary to create the doubl function
const doubl = (x) => ( twiceUnary(addb)(x) );
// Use the function twiceUnary to create the square function
const square = (x) => ( twiceUnary(mulb)(x) );
// Write a function twice that is generalized for any amount of arguments
const twice = (func) => {
const inner = (...args) => {
let finalList = args.concat(args);
return func(...finalList);
}
return inner;
}
// Write a function reverseb that reverses the arguments of a binary function
const reverseb = (func) => {
const innerfunc = (a, b) => ( func(b, a) );
return innerfunc;
}
module.exports = {
identity,
addb,
subb,
mulb,
minb,
maxb,
add,
sub,
mul,
min,
max,
addRecurse,
mulRecurse,
minRecurse,
maxRecurse,
not,
acc,
accPartial,
accRecurse,
fill,
fillRecurse,
set,
identityf,
addf,
liftf,
pure,
curryb,
curry,
inc,
twiceUnary,
doubl,
square,
twice,
reverseb,
// reverse,
// composeuTwo,
// composeu,
// composeb,
// composeTwo,
// compose,
// limitb,
// limit,
// genFrom,
// genTo,
// genFromTo,
// elementGen,
// element,
// collect,
// filter,
// filterTail,
// concatTwo,
// concat,
// concatTail,
// gensymf,
// gensymff,
// fibonaccif,
// counter,
// revocableb,
// revocable,
// extract,
// m,
// addmTwo,
// addm,
// liftmbM,
// liftmb,
// liftm,
// exp,
// expn,
// addg,
// liftg,
// arrayg,
// continuizeu,
// continuize,
// vector,
// exploitVector,
// vectorSafe,
// pubsub,
// mapRecurse,
// filterRecurse,
};