forked from zero-to-mastery/JS_Fun_Practice
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmmtbora_solutions.js
268 lines (187 loc) · 11.1 KB
/
mmtbora_solutions.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
// identity(x) ⇒ any
// Write a function identity that takes an argument and returns that argument
const identity = (argument) => argument;
// addb(a, b) ⇒ number
// Write a binary function addb that takes two numbers and returns their sum
const addb = (a, b) => a + b;
// subb(a, b) ⇒ number
// Write a binary function subb that takes two numbers and returns their difference
const subb = (a, b) => a - b;
// mulb(a, b) ⇒ number
// Write a binary function mulb that takes two numbers and returns their product
const mulb = (a, b) => a * b;
// minb(a, b) ⇒ number
// Write a binary function minb that takes two numbers and returns the smaller one
const minb = (a, b) => { if (a < b) {
return a;
} else {
return b;
}
}
// maxb(a, b) ⇒ number
// Write a binary function maxb that takes two numbers and returns the larger one
const maxb = (a, b) => a < b ? a : b;
// add(...nums) ⇒ number
// Write a function add that is generalized for any amount of arguments
// sub(...nums) ⇒ number
// Write a function sub that is generalized for any amount of arguments
// mul(...nums) ⇒ number
// Write a function mul that is generalized for any amount of arguments
// min(...nums) ⇒ number
// Write a function min that is generalized for any amount of arguments
// max(...nums) ⇒ number
// Write a function max that is generalized for any amount of arguments
// addRecurse(...nums) ⇒ number
// Write a function addRecurse that is the generalized add function but uses recursion
// mulRecurse(...nums) ⇒ number
// Write a function mulRecurse that is the generalized mul function but uses recursion
// minRecurse(...nums) ⇒ number
// Write a function minRecurse that is the generalized min function but uses recursion
// maxRecurse(...nums) ⇒ number
// Write a function maxRecurse that is the generalized max function but uses recursion
// not(func) ⇒ function
// Write a function not that takes a function and returns the negation of its result
// acc(func, initial) ⇒ function
// Write a function acc that takes a function and an initial value and returns a function that runs the initial function on each argument, accumulating the result
// accPartial(func, start, end) ⇒ function
// Write a function accPartial that takes in a function, a start index, and an end index, and returns a function that accumulates a subset of its arguments by applying the given function to all elements between start and end.
// accRecurse(func, initial) ⇒ function
// Write a function accRecurse that does what acc does but uses recursion
// fill(num) ⇒ array
// Write a function fill that takes a number and returns an array with that many numbers equal to the given number
// fillRecurse(num) ⇒ array
// Write a function fillRecurse that does what fill does but uses recursion
// set(...args) ⇒ array
// Write a function set that is given a list of arguments and returns an array with all duplicates removed
// identityf(x) ⇒ function
// Write a function identityf that takes an argument and returns a function that returns that argument
// addf(a) ⇒ function
// Write a function addf that adds from two invocations
// liftf(binary) ⇒ function
// Write a function liftf that takes a binary function, and makes it callable with two invocations
// pure(x, y) ⇒ array
// Write a pure function pure that is a wrapper arround the impure function impure
// function impure(x) {
// y++;
// z = x * y;
// }
// var y = 5, z;
// impure(20);
// z; // 120
// impure(25);
// z; // 175
// curryb(binary, a) ⇒ function
// Write a function curryb that takes a binary function and an argument, and returns a function that can take a second argument
// curry(func, ...outer) ⇒ function
// Write a function curry that is generalized for any amount of arguments
// inc(x) ⇒ number
// Without writting any new functions, show multiple ways to create the inc function
// twiceUnary(binary) ⇒ function
// Write a function twiceUnary that takes a binary function and returns a unary function that passes its argument to the binary function twice
// doubl(x) ⇒ number
// Use the function twiceUnary to create the doubl function
// square(x) ⇒ number
// Use the function twiceUnary to create the square function
// twice(x) ⇒ any
// Write a function twice that is generalized for any amount of arguments
// reverseb(binary) ⇒ function
// Write a function reverseb that reverses the arguments of a binary function
// reverse(func) ⇒ function
// Write a function reverse that is generalized for any amount of arguments
// composeuTwo(unary1, unary2) ⇒ function
// Write a function composeuTwo that takes two unary functions and returns a unary function that calls them both
// composeu(...funcs) ⇒ any
// Write a function composeu that is generalized for any amount of arguments
// composeb(binary1, binary2) ⇒ function
// Write a function composeb that takes two binary functions and returns a function that calls them both
// composeTwo(func1, func2) ⇒ function
// Write a function composeTwo that takes two functions and returns a function that calls them both
// compose(...funcs) ⇒ function
// Write a function compose that takes any amount of functions and returns a function that takes any amount of arguments and gives them to the first function, then that result to the second function and so on
// limitb(binary, lmt) ⇒ function
// Write a function limitb that allows a binary function to be called a limited number of times
// limit(func, lmt) ⇒ function
// Write a function limit that is generalized for any amount of arguments
// genFrom(x) ⇒ function
// Write a function genFrom that produces a generator that will produces a series of values
// genTo(gen, lmt) ⇒ function
// Write a function genTo that takes a generator and an end limit, and returns a generator that will produce numbers up to that limit
// genFromTo(start, end) ⇒ function
// Write a function genFromTo that produces a generator that will produce values in a range
// elementGen(array, gen) ⇒ function
// Write a function elementGen that takes an array and a generator and returns a generator that will produce elements from the array
// element(array, gen) ⇒ function
// Write a function element that is a modified elementGen function so that the generator argument is optional. If a generator is not provided, then each of the elements of the array will be produced.
// collect(gen, array) ⇒ function
// Write a function collect that takes a generator and an array and produces a function that will collect the results in the array
// filter(gen, predicate) ⇒ function
// Write a function filter that takes a generator and a predicate and produces a generator that produces only the values approved by the predicate
// filterTail(gen, predicate) ⇒ function
// Write a function filterTail that uses tail-recursion to perform the filtering
// concatTwo(gen1, gen2) ⇒ function
// Write a function concatTwo that takes two generators and produces a generator that combines the sequences
// concat(...gens) ⇒ function
// Write a function concat that is generalized for any amount of arguments
// concatTail(...gens) ⇒ function
// Write a function concatTail that uses tail-recursion to perform the concating
// gensymf(symbol) ⇒ function
// Write a function gensymf that makes a function that generates unique symbols
// gensymff(unary, seed) ⇒ function
// Write a function gensymff that takes a unary function and a seed and returns a gensymf
// fibonaccif(first, second) ⇒ function
// Write a function fibonaccif that returns a generator that will return the next fibonacci number
// counter(i) ⇒ object
// Write a function counter that returns an object containing two functions that implement an up/down counter, hiding the counter
// revocableb(binary) ⇒ object
// Write a function revocableb that takes a binary function, and returns an object containing an invoke function that can invoke a function and a revoke function that disables the invoke function
// revocable(func) ⇒ object
// Write a function revocable that is generalized for any amount of arguments
// extract(array, prop) ⇒ array
// Write a function extract that takes an array of objects and an object property name and converts each object in the array by extracting that property
// m(value, source) ⇒ object
// Write a function m that takes a value and an optional source string and returns them in an object
// addmTwo(m1, m2) ⇒ object
// Write a function addmTwo that adds two m objects and returns an m object
// addm(...ms) ⇒ object
// Write a function addm that is generalized for any amount of arguments
// liftmbM(binary, op) ⇒ object
// Write a function liftmbM that takes a binary function and a string and returns a function that acts on m objects
// liftmb(binary, op) ⇒ object
// Write a function liftmb that is a modified function liftmbM that can accept arguments that are either numbers or m objects
// liftm(func, op) ⇒ object
// Write a function liftm that is generalized for any amount of arguments
// exp(value) ⇒ any
// Write a function exp that evaluates simple array expressions
// expn(value) ⇒ any
// Write a function expn that is a modified exp that can evaluate nested array expressions
// addg(value) ⇒ number | undefined
// Write a function addg that adds from many invocations, until it sees an empty invocation
// liftg(binary) ⇒ function
// Write a function liftg that will take a binary function and apply it to many invocations
// arrayg(value) ⇒ array
// Write a function arrayg that will build an array from many invocations
// continuizeu(unary) ⇒ function
// Write a function continuizeu that takes a unary function and returns a function that takes a callback and an argument
// continuize(any) ⇒ function
// Write a function continuize that takes a function and returns a function that takes a callback and an argument
// vector()
// Make an array wrapper object with methods get, store, and append, such that an attacker cannot get access to the private array
// exploitVector()
// Let's assume your vector implementation looks like something like this:
// vector = () => {
// let array = [];
// return {
// append: (v) => array.push(v),
// get: (i) => array[i],
// store: (i, v) => array[i] = v
// };
// }
// Can you spot any security concerns with this approach? Mainly, can we get access to the array outside of vector? Note: the issue has nothing to do with prototypes and we can assume that global prototypes cannot be altered. Hint: Think about using this in a method invocation. Can we override a method of vector?
// vectorSafe()
// How would you rewrite vector to deal with the issue from above?
// pubsub()
// Make a function pubsub that makes a publish/subscribe object. It will reliably deliver all publications to all subscribers in the right order.
// mapRecurse(array, predicate) ⇒ array
// Make a function mapRecurse that performs a transformation for each element of a given array, recursively
// filterRecurse(array, predicate) ⇒ array
// Make a function filterRecurse that takes in an array and a predicate function and returns a new array by filtering out all items using the predicate, recursively.