-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathnumber_of_divisor.cpp
58 lines (48 loc) · 1.24 KB
/
number_of_divisor.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
/*
@author : Amirul Islam (shiningflash)
@date : July 13, 2020 Monday
@topic : Number of Divisor (Number Theory)
@hints :
*
* 48 = 1 x 48 = 2 x 24 = 3 x 16 = 4 x 12, 6 x 8, total divisor = 10
* efficient way: 2 ^ 4 x 3 ^ 1, from product of power+1, ((4+1) x (1+1)) = 10
*
* N = p1^q1 x p2^q2 x p3^q3 x ...... x pn^qn
* D(N) = (q1+1) x (q2+1) x (q3+1) x ....... x (qn+1)
*/
#include <bits/stdc++.h>
using namespace std;
const int N = 1e5;
bool a[N];
int prime[N];
int sieve() {
int ind = 0, sq = sqrt(N) + 1;
for (int i = 2; i < sq; i++) {
if (a[i] == 0) {
for (int j = 2*i; j < N; j += i) a[j] = 1;
}
}
for (int i = 2; i < N; i++) if (a[i] == 0) prime[ind++] = i;
return ind;
}
int numberOfDivisor(int n) {
int sum = 1, sq = sqrt(n) + 1;
for (int i = 0; prime[i] < sq; i++) {
if (n % prime[i] == 0) {
int c = 0;
while (n % prime[i] == 0) {
n /= prime[i];
c++;
}
sum *= (c+1);
}
}
if (n > 1) sum *= 2;
return sum;
}
int main() {
// freopen("in", "r", stdin);
sieve();
int n;
while (cin >> n) cout << numberOfDivisor(n) << endl;
}