-
Notifications
You must be signed in to change notification settings - Fork 114
/
Copy pathSet_Math_Visualized.py
111 lines (100 loc) · 3.64 KB
/
Set_Math_Visualized.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import numpy as np
import plotly.graph_objects as go
# Sample data for set_A and set_B
set_A = [1, 2, 2, 3, 4, 4, 4, 5, 5]
set_B = [3, 3, 4, 4, 5, 5, 6, 6, 6]
# Sample set operation results
union_result = sorted(set(set_A + set_B))
intersection_result = sorted(set(set_A).intersection(set_B))
difference_result = sorted(set(set_A).difference(set_B))
sum_result = sorted(set_A + set_B)
# Remove duplicates to get the correct multiplicity counts for the bar chart
set_A_unique = np.unique(set_A)
set_B_unique = np.unique(set_B)
# Create bar chart to visualize multisets
fig_bar_chart = go.Figure()
fig_bar_chart.add_trace(go.Bar(
x=set_A_unique,
y=np.bincount(set_A),
name='Set A',
marker_color='blue',
hovertemplate='Element: %{x}<br>Multiplicity: %{y}'
))
fig_bar_chart.add_trace(go.Bar(
x=set_B_unique,
y=np.bincount(set_B),
name='Set B',
marker_color='red',
hovertemplate='Element: %{x}<br>Multiplicity: %{y}'
))
fig_bar_chart.update_layout(
title_text='Visualizing Multisets A and B',
xaxis_title='Elements',
yaxis_title='Multiplicity',
showlegend=True
)
fig_bar_chart.show()
# Create animated scatter plot to visualize set operations
fig_scatter_plot = go.Figure()
fig_scatter_plot.add_trace(go.Scatter(
x=union_result,
y=[1] * len(union_result),
mode='markers',
name='Union',
marker_color='green',
hovertemplate='Element: %{x}<br>Operation: Union'
))
fig_scatter_plot.add_trace(go.Scatter(
x=intersection_result,
y=[2] * len(intersection_result),
mode='markers',
name='Intersection',
marker_color='orange',
hovertemplate='Element: %{x}<br>Operation: Intersection'
))
fig_scatter_plot.add_trace(go.Scatter(
x=difference_result,
y=[3] * len(difference_result),
mode='markers',
name='Difference',
marker_color='purple',
hovertemplate='Element: %{x}<br>Operation: Difference'
))
fig_scatter_plot.add_trace(go.Scatter(
x=sum_result,
y=[4] * len(sum_result),
mode='markers',
name='Sum',
marker_color='brown',
hovertemplate='Element: %{x}<br>Operation: Sum'
))
# Add animation
frames = [go.Frame(data=[go.Scatter(x=union_result[:i], y=[1] * i, mode='markers', marker_color='green')],
name='Union', traces=[0]) for i in range(1, len(union_result) + 1)]
frames += [go.Frame(data=[go.Scatter(x=intersection_result[:i], y=[2] * i, mode='markers', marker_color='orange')],
name='Intersection', traces=[1]) for i in range(1, len(intersection_result) + 1)]
frames += [go.Frame(data=[go.Scatter(x=difference_result[:i], y=[3] * i, mode='markers', marker_color='purple')],
name='Difference', traces=[2]) for i in range(1, len(difference_result) + 1)]
frames += [go.Frame(data=[go.Scatter(x=sum_result[:i], y=[4] * i, mode='markers', marker_color='brown')],
name='Sum', traces=[3]) for i in range(1, len(sum_result) + 1)]
# Add buttons to control animation
fig_scatter_plot.update_layout(
updatemenus=[
dict(
type="buttons",
showactive=False,
buttons=[dict(label=str(i),
method="animate",
args=[{"visible": [t == i for t in range(len(frames))]},
{"title": f"Operation: {frames[i]['name']}"}]) for i in range(len(frames))]
)
],
title_text='Visualizing Set Operations',
xaxis_title='Elements',
yaxis_title='Set Operations',
yaxis=dict(tickvals=[1, 2, 3, 4], ticktext=['Union', 'Intersection', 'Difference', 'Sum'], showline=False),
showlegend=True
)
# Add frames to the figure
fig_scatter_plot.update(frames=frames)
fig_scatter_plot.show()