-
Notifications
You must be signed in to change notification settings - Fork 2k
/
Copy pathconstraints.ts
263 lines (238 loc) · 7.69 KB
/
constraints.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
/**
* @license
* Copyright 2018 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/* Original source: keras/contraints.py */
import * as tfc from '@tensorflow/tfjs-core';
import {serialization, Tensor, tidy} from '@tensorflow/tfjs-core';
import {epsilon} from './backend/common';
import {deserializeKerasObject, serializeKerasObject} from './utils/generic_utils';
/**
* Helper function used by many of the Constraints to find the L2Norms.
*/
function calcL2Norms(w: Tensor, axis: number): Tensor {
return tidy(() => tfc.sqrt(tfc.sum(tfc.mul(w, w), axis, true)));
}
/**
* Base class for functions that impose constraints on weight values
*
* @doc {
* heading: 'Constraints',
* subheading: 'Classes',
* namespace: 'constraints'
* }
*/
export abstract class Constraint extends serialization.Serializable {
/* Porting note: was __call__, apply chosen to match other similar choices */
abstract apply(w: Tensor): Tensor;
getConfig(): serialization.ConfigDict {
return {};
}
}
export interface MaxNormArgs {
/**
* Maximum norm for incoming weights
*/
maxValue?: number;
/**
* Axis along which to calculate norms.
*
* For instance, in a `Dense` layer the weight matrix
* has shape `[inputDim, outputDim]`,
* set `axis` to `0` to constrain each weight vector
* of length `[inputDim,]`.
* In a `Conv2D` layer with `dataFormat="channels_last"`,
* the weight tensor has shape
* `[rows, cols, inputDepth, outputDepth]`,
* set `axis` to `[0, 1, 2]`
* to constrain the weights of each filter tensor of size
* `[rows, cols, inputDepth]`.
*/
axis?: number;
}
export class MaxNorm extends Constraint {
/** @nocollapse */
static readonly className = 'MaxNorm';
private maxValue: number;
private axis: number;
private readonly defaultMaxValue = 2;
private readonly defaultAxis = 0;
constructor(args: MaxNormArgs) {
super();
this.maxValue =
args.maxValue != null ? args.maxValue : this.defaultMaxValue;
this.axis = args.axis != null ? args.axis : this.defaultAxis;
}
apply(w: Tensor): Tensor {
return tidy(() => {
const norms = calcL2Norms(w, this.axis);
const desired = tfc.clipByValue(norms, 0, this.maxValue);
return tfc.mul(w, tfc.div(desired, tfc.add(epsilon(), norms)));
});
}
override getConfig(): serialization.ConfigDict {
return {maxValue: this.maxValue, axis: this.axis};
}
}
serialization.registerClass(MaxNorm);
export interface UnitNormArgs {
/**
* Axis along which to calculate norms.
*
* For instance, in a `Dense` layer the weight matrix
* has shape `[inputDim, outputDim]`,
* set `axis` to `0` to constrain each weight vector
* of length `[inputDim,]`.
* In a `Conv2D` layer with `dataFormat="channels_last"`,
* the weight tensor has shape
* `[rows, cols, inputDepth, outputDepth]`,
* set `axis` to `[0, 1, 2]`
* to constrain the weights of each filter tensor of size
* `[rows, cols, inputDepth]`.
*/
axis?: number;
}
export class UnitNorm extends Constraint {
/** @nocollapse */
static readonly className = 'UnitNorm';
private axis: number;
private readonly defaultAxis = 0;
constructor(args: UnitNormArgs) {
super();
this.axis = args.axis != null ? args.axis : this.defaultAxis;
}
apply(w: Tensor): Tensor {
return tidy(
() => tfc.div(w, tfc.add(epsilon(), calcL2Norms(w, this.axis))));
}
override getConfig(): serialization.ConfigDict {
return {axis: this.axis};
}
}
serialization.registerClass(UnitNorm);
export class NonNeg extends Constraint {
/** @nocollapse */
static readonly className = 'NonNeg';
apply(w: Tensor): Tensor {
return tfc.relu(w);
}
}
serialization.registerClass(NonNeg);
export interface MinMaxNormArgs {
/**
* Minimum norm for incoming weights
*/
minValue?: number;
/**
* Maximum norm for incoming weights
*/
maxValue?: number;
/**
* Axis along which to calculate norms.
* For instance, in a `Dense` layer the weight matrix
* has shape `[inputDim, outputDim]`,
* set `axis` to `0` to constrain each weight vector
* of length `[inputDim,]`.
* In a `Conv2D` layer with `dataFormat="channels_last"`,
* the weight tensor has shape
* `[rows, cols, inputDepth, outputDepth]`,
* set `axis` to `[0, 1, 2]`
* to constrain the weights of each filter tensor of size
* `[rows, cols, inputDepth]`.
*/
axis?: number;
/**
* Rate for enforcing the constraint: weights will be rescaled to yield:
* `(1 - rate) * norm + rate * norm.clip(minValue, maxValue)`.
* Effectively, this means that rate=1.0 stands for strict
* enforcement of the constraint, while rate<1.0 means that
* weights will be rescaled at each step to slowly move
* towards a value inside the desired interval.
*/
rate?: number;
}
export class MinMaxNorm extends Constraint {
/** @nocollapse */
static readonly className = 'MinMaxNorm';
private minValue: number;
private maxValue: number;
private rate: number;
private axis: number;
private readonly defaultMinValue = 0.0;
private readonly defaultMaxValue = 1.0;
private readonly defaultRate = 1.0;
private readonly defaultAxis = 0;
constructor(args: MinMaxNormArgs) {
super();
this.minValue =
args.minValue != null ? args.minValue : this.defaultMinValue;
this.maxValue =
args.maxValue != null ? args.maxValue : this.defaultMaxValue;
this.rate = args.rate != null ? args.rate : this.defaultRate;
this.axis = args.axis != null ? args.axis : this.defaultAxis;
}
apply(w: Tensor): Tensor {
return tidy(() => {
const norms = calcL2Norms(w, this.axis);
const desired = tfc.add(
tfc.mul(
this.rate, tfc.clipByValue(norms, this.minValue, this.maxValue)),
tfc.mul(1.0 - this.rate, norms));
return tfc.mul(w, tfc.div(desired, tfc.add(epsilon(), norms)));
});
}
override getConfig(): serialization.ConfigDict {
return {
minValue: this.minValue,
maxValue: this.maxValue,
rate: this.rate,
axis: this.axis
};
}
}
serialization.registerClass(MinMaxNorm);
/** @docinline */
export type ConstraintIdentifier =
'maxNorm'|'minMaxNorm'|'nonNeg'|'unitNorm'|string;
// Maps the JavaScript-like identifier keys to the corresponding registry
// symbols.
export const CONSTRAINT_IDENTIFIER_REGISTRY_SYMBOL_MAP:
{[identifier in ConstraintIdentifier]: string} = {
'maxNorm': 'MaxNorm',
'minMaxNorm': 'MinMaxNorm',
'nonNeg': 'NonNeg',
'unitNorm': 'UnitNorm'
};
export function serializeConstraint(constraint: Constraint):
serialization.ConfigDictValue {
return serializeKerasObject(constraint);
}
export function deserializeConstraint(
config: serialization.ConfigDict,
customObjects: serialization.ConfigDict = {}): Constraint {
return deserializeKerasObject(
config, serialization.SerializationMap.getMap().classNameMap,
customObjects, 'constraint');
}
export function getConstraint(identifier: ConstraintIdentifier|
serialization.ConfigDict|Constraint): Constraint {
if (identifier == null) {
return null;
}
if (typeof identifier === 'string') {
const className = identifier in CONSTRAINT_IDENTIFIER_REGISTRY_SYMBOL_MAP ?
CONSTRAINT_IDENTIFIER_REGISTRY_SYMBOL_MAP[identifier] :
identifier;
const config = {className, config: {}};
return deserializeConstraint(config);
} else if (identifier instanceof Constraint) {
return identifier;
} else {
return deserializeConstraint(identifier);
}
}