-
-
Notifications
You must be signed in to change notification settings - Fork 364
/
Copy pathcollab_magic.py
96 lines (67 loc) · 2.08 KB
/
collab_magic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
# -*- coding: utf-8 -*-
"""collab_magic.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1ad_oOndoeQsxr0W_fOJ-NocZ4Y8isacy
# Colab Magics
**List of All Magic Commands**
"""
# Commented out IPython magic to ensure Python compatibility.
# %lsmagic
"""**List Local Directries**"""
# Commented out IPython magic to ensure Python compatibility.
# %ldir
"""**Get Notebook History**"""
# Commented out IPython magic to ensure Python compatibility.
# %history
"""**CPU Time**"""
# Commented out IPython magic to ensure Python compatibility.
# %time
"""**How long the system has been running?**"""
!uptime
"""**Display available and used memory**"""
!free -h
print("-"*100)
"""**Display the CPU specification**"""
!lscpu
print("-"*70)
"""**List all running VM processes**"""
# Commented out IPython magic to ensure Python compatibility.
# %%sh
# echo "List all running VM processes."
# ps -ef
# echo "Done"
"""**Embed HTML**"""
# Commented out IPython magic to ensure Python compatibility.
# %%html
# <marquee>Towards AI is a great publication platform</marquee>
#@title Personal Detail
#@markdown Informations.
Name = 'Peter' #@param {type: "string"}
Age = 25 #@param {type: "slider", min: 1, max: 100}
zip = 1234 #@param {type: "number"}
Date = '2020-01-26' #@param {type: "date"}
Gender = "Male" #@param ['Male', 'Female', 'Other']
#@markdown ---
print("Submitting the form")
print(string_type, slider_value, number, date, pick_me)
print("Submitted")
"""# Plotting"""
# Commented out IPython magic to ensure Python compatibility.
# %matplotlib inline
import numpy as np
from matplotlib import pyplot
random_data = np.random.rand(500).astype(np.float32)
noise_data = np.random.normal(scale=0.5, size=len(x))
y = np.sin(random_data * 7) + noise_data
pyplot.scatter(random_data, y)
"""**Plot HeatMap**"""
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
length = 10
data = 5 + np.random.randn(length, length)
data += np.arange(length)
data += np.reshape(np.arange(length), (length, 1))
sns.heatmap(data)
plt.show()