-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy path548. Split Array with Equal Sum.c
81 lines (67 loc) · 2 KB
/
548. Split Array with Equal Sum.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
/*
548. Split Array with Equal Sum
Given an array with n integers, you need to find if there are triplets (i, j, k) which satisfies following conditions:
0 < i, i + 1 < j, j + 1 < k < n - 1
Sum of subarrays (0, i - 1), (i + 1, j - 1), (j + 1, k - 1) and (k + 1, n - 1) should be equal.
where we define that subarray (L, R) represents a slice of the original array starting from the element indexed L to the element indexed R.
Example:
Input: [1,2,1,2,1,2,1]
Output: True
Explanation:
i = 1, j = 3, k = 5.
sum(0, i - 1) = sum(0, 0) = 1
sum(i + 1, j - 1) = sum(2, 2) = 1
sum(j + 1, k - 1) = sum(4, 4) = 1
sum(k + 1, n - 1) = sum(6, 6) = 1
Note:
1 <= n <= 2000.
Elements in the given array will be in range [-1,000,000, 1,000,000].
*/
bool splitArray(int* nums, int numsSize) {
#if 0
// j is in range [3, numsSize - 4]
// i is in range [1, j - 2]
// k is in range [j + 2, numsSize - 2]
// try each of j
// try each of i
// save each of possible split
// try each of k
// if a pssible split can be found in previous saved buckets
// return true
// return false
#else
int i, j, k, n;
int s1, s2, s3, s4;
s1 = 0;
for (i = 1; i < numsSize - 3; i ++) {
s1 += nums[i - 1];
s2 = 0;
for (j = i + 2; j < numsSize - 2; j ++) {
s2 += nums[j - 1];
if (s1 == s2) {
s3 = 0;
for (k = j + 2; k < numsSize - 1; k ++) {
s3 += nums[k - 1];
if (s2 == s3) {
s4 = 0;
for (n = k + 1; n < numsSize; n ++) {
s4 += nums[n];
}
if (s3 == s4) {
return true;
}
}
}
}
}
}
#endif
return false;
}
/*
Difficulty:Medium
Total Accepted:2.4K
Total Submissions:6.7K
Companies Alibaba
Related Topics Array
*/