-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathfeat_engineering.py
223 lines (195 loc) · 8.94 KB
/
feat_engineering.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import pandas as pd
import numpy as np
from sklearn.preprocessing import LabelEncoder, MultiLabelBinarizer
from sklearn.cluster import KMeans
from feature.feature_meta import FeatureMeta
from util.log_util import *
from preprocess.discretize import *
@DeprecationWarning
def get_idx_and_value(feat_meta: FeatureMeta, raw_data: pd.DataFrame):
logger = create_console_logger(name='feat_meta')
write_info_log(logger, 'preprocess started')
idx = 0
# allocate indices for continuous features
continuous_feats = feat_meta.continuous_feats
for name in continuous_feats:
continuous_feat = continuous_feats[name]
continuous_feat.start_idx = idx
idx += 1
# generate label encoders and allocate indices range for categorical features
categorical_feats = feat_meta.categorical_feats
for name in categorical_feats:
categorical_feat = categorical_feats[name]
le = categorical_feat.processor
if le:
num_classes = len(le.classes_)
raw_data[name] = le.transform(raw_data[name])
else:
le = LabelEncoder()
le.fit(raw_data[name])
categorical_feat.processor = le
num_classes = len(le.classes_)
categorical_feat.dim = num_classes
categorical_feat.start_idx = idx
idx += num_classes
# generate multi-hot encoders and allocate indices range for multi-category features
multi_category_feats = feat_meta.multi_category_feats
for name in multi_category_feats:
multi_category_feat = multi_category_feats[name]
le = multi_category_feat.processor
if le:
num_classes = len(le.classes_)
else:
mlb = MultiLabelBinarizer()
mlb.fit(raw_data[name])
multi_category_feat.processor = mlb
num_classes = len(mlb.classes_)
multi_category_feat.dim = num_classes
multi_category_feat.start_idx = idx
idx += num_classes
write_info_log(logger, 'feature meta updated')
# transform raw data to index and value form
write_info_log(logger, 'index and value transformation started')
feat_df = raw_data.apply(process_line, feat_meta=feat_meta, axis=1)
write_info_log(logger, 'preprocess finished')
return feat_df.feat_idx.values.tolist(), feat_df.feat_value.values.tolist()
def preprocess_features(feat_meta: FeatureMeta, data: pd.DataFrame, split_continuous_category=False):
r"""Transform raw data into index and value form.
Continuous features will be discretized, standardized, normalized or scaled according to feature meta.
Categorical features will be encoded with a label encoder.
:param feat_meta: The FeatureMeta instance that describes raw_data.
:param data: The raw_data to be transformed.
:param split_continuous_category: Whether to return value of continuous features and index of category features.
:return: feat_index, feat_value, category_index, continuous_value
"""
logger = create_console_logger(name='feat_meta')
write_info_log(logger, 'preprocess started')
idx = 0
continuous_feats = feat_meta.continuous_feats
categorical_feats = feat_meta.categorical_feats
columns = list(continuous_feats.keys())
columns.extend(list(categorical_feats.keys()))
data = data[columns]
feat_idx = pd.DataFrame()
# transform continuous features
write_info_log(logger, 'transforming continuous features')
feat_value_continuous = pd.DataFrame()
for name in continuous_feats:
feat = continuous_feats[name]
feat.start_idx = idx
if not feat.discretize:
# standardized, normalize or scale
processor = feat.transformation
col_data = np.reshape(data[name].values, (-1, 1))
col_data = processor.fit_transform(col_data)
col_data = np.reshape(col_data, -1)
feat_value_continuous[name] = col_data
feat_idx[name] = np.repeat(idx, repeats=len(data))
idx += 1
else:
# discretize
discrete_data, intervals = discretize(data[name], feat.discretize, feat.dim)
feat.bins = intervals
feat_idx[name] = discrete_data + idx
feat_value_continuous[name] = pd.Series(np.ones(len(data[name])))
idx += feat.dim
write_info_log(logger, 'transforming categorical features')
# transform categorical features
category_index = pd.DataFrame()
for name in categorical_feats:
categorical_feat = categorical_feats[name]
le = LabelEncoder()
feat_idx[name] = le.fit_transform(data[name]) + idx
category_index[name] = feat_idx[name]
categorical_feat.processor = le
num_classes = len(le.classes_)
categorical_feat.dim = num_classes
categorical_feat.start_idx = idx
idx += num_classes
# TODO add multi category features
feat_idx = feat_idx.apply(lambda x: x.values, axis=1)
category_index = category_index.apply(lambda x: x.values, axis=1)
feat_value_category = pd.DataFrame(np.ones((len(data), len(categorical_feats.keys()))))
feat_value = pd.concat([feat_value_continuous, feat_value_category], axis=1)
feat_value = feat_value.apply(lambda x: x.values, axis=1)
continuous_value = feat_value_continuous.apply(lambda x: x.values, axis=1)
write_info_log(logger, 'preprocess finished')
if split_continuous_category:
return feat_idx, feat_value, category_index, continuous_value
return feat_idx, feat_value
def feature_fit_transform(feat_meta: FeatureMeta, data: pd.DataFrame):
r""" Transform raw data into input of model.
Continuous features will not be transformed.
Category features will be encoded with Label Encoder.
The description in feat_meta will be updated.
:param feat_meta: The FeatureMeta instance that describes raw_data.
:param data: The raw_data to be transformed.
:return: continuous_value, category_index, column_list
"""
logger = create_console_logger(name='feat_meta')
write_info_log(logger, 'preprocess started')
idx = 0
continuous_feats = feat_meta.continuous_feats
categorical_feats = feat_meta.categorical_feats
columns = list(continuous_feats.keys())
columns.extend(list(categorical_feats.keys()))
continuous_value = pd.DataFrame()
write_info_log(logger, 'transforming continuous features')
for name in continuous_feats:
continuous_value[name] = data[name]
continuous_feats[name].start_idx = idx
idx += 1
idx = 0
category_index = pd.DataFrame()
write_info_log(logger, 'transforming categorical features')
for name in categorical_feats:
categorical_feat = categorical_feats[name]
le = LabelEncoder()
category_index[name] = le.fit_transform(data[name])
categorical_feat.processor = le
num_classes = len(le.classes_)
categorical_feat.dim = num_classes
categorical_feat.start_idx = idx
idx += num_classes
return continuous_value, category_index, columns
def universal_category_index_transform(feature_meta: FeatureMeta, category_index: pd.DataFrame):
""" Transform the indices of categorical feature index into universal indices. The universal index is
(start_idx + index) of the categorical feature.
:param feature_meta: The FeatureMeta instance that describes raw_data.
:param category_index: The inner-category indices of data
:return: universal_category_index
"""
category_start_idx_dict = {}
for feat_name in feature_meta.categorical_feats:
category_start_idx_dict[feat_name] = feature_meta.categorical_feats[feat_name].start_idx
universal_category_index = pd.DataFrame()
for column in category_index.columns:
universal_category_index[column] = category_index[column].add(category_start_idx_dict[column])
return universal_category_index
def process_line(row, feat_meta):
feat_idx, feat_value = [], []
# process continuous features
continuous_feats = feat_meta.continuous_feats
for feat_name in continuous_feats:
feat = continuous_feats[feat_name]
row_value = row[feat_name]
idx, value = feat.get_idx_and_value(row_value)
feat_idx.append(idx)
feat_value.append(value)
# process categorical features
categorical_feats = feat_meta.categorical_feats
for feat_name in categorical_feats:
feat = categorical_feats[feat_name]
row_value = row[feat_name]
idx, value = feat.get_idx_and_value(row_value)
feat_idx.append(idx)
feat_value.append(value)
# process multi-category features
multi_category_feats = feat_meta.multi_category_feats
for feat_name in multi_category_feats:
feat = multi_category_feats[feat_name]
row_value = row[feat_name]
idxes, values = feat.get_idx_and_value(row_value)
feat_idx.extend(idxes)
feat_value.extend(values)
return pd.Series(index=['feat_idx', 'feat_value'], data=[feat_idx, feat_value])