-
Notifications
You must be signed in to change notification settings - Fork 50
/
Copy path496D. Tennis Game.cpp
71 lines (60 loc) · 2.2 KB
/
496D. Tennis Game.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
/*
- Brute force and Binary search.
- We can save where each 1 and 2 appear in the array `a`.
- When while looping over the array `a` we can count the current
score of player1 and player2.
- If one of them be larger than the other, then we check if there is
a valid number of games with `p` points to end.
- `p` here is the max between player1 and player2 points.
*/
#include <bits/stdc++.h>
using namespace std;
int const N = 1e5 + 1;
int n, a[N];
vector<int> nxt[2];
vector<pair<int, int> > sol;
int check(int p) {
int i = -1, j = -1, wi = 0, wj = 0;
for(; i < int(nxt[0].size()) && j < int(nxt[1].size());) {
if(i == int(nxt[0].size()) - 1 && j == int(nxt[1].size()) - 1)
break;
if(i + p < nxt[0].size() && j + p < nxt[1].size() && nxt[0][i + p] < nxt[1][j + p])
i += p, j = upper_bound(nxt[1].begin(), nxt[1].end(), nxt[0][i]) - nxt[1].begin(), --j, ++wi;
else if(i + p < nxt[0].size() && j + p < nxt[1].size() && nxt[0][i + p] > nxt[1][j + p])
j += p, i = upper_bound(nxt[0].begin(), nxt[0].end(), nxt[1][j]) - nxt[0].begin(), --i, ++wj;
else if(i + p < nxt[0].size() && j + p >= nxt[1].size())
i += p, j = upper_bound(nxt[1].begin(), nxt[1].end(), nxt[0][i]) - nxt[1].begin(), --j, ++wi;
else if(i + p >= nxt[0].size() && j + p < nxt[1].size())
j += p, i = upper_bound(nxt[0].begin(), nxt[0].end(), nxt[1][j]) - nxt[0].begin(), --i, ++wj;
else
return -1;
}
if(wi == wj || (!nxt[0].empty() && !nxt[1].empty() &&
((wi > wj && nxt[0].back() < nxt[1].back()) ||
(wi < wj && nxt[0].back() > nxt[1].back()))))
return -1;
return max(wi, wj);
}
int main() {
scanf("%d", &n);
for(int i = 0; i < n; ++i) {
scanf("%d", a + i);
nxt[a[i] - 1].push_back(i);
}
int o = 0, t = 0;
for(int i = 0; i < n; ++i) {
o += a[i] == 1;
t += a[i] == 2;
if(o != t) {
int res = check(max(o, t));
if(res > 0)
sol.push_back({res, max(o, t)});
}
}
sort(sol.begin(), sol.end());
sol.resize(unique(sol.begin(), sol.end()) - sol.begin());
printf("%d\n", int(sol.size()));
for(int i = 0; i < sol.size(); ++i)
printf("%d %d\n", sol[i].first, sol[i].second);
return 0;
}