forked from NVIDIA/MinkowskiEngine
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathglobal_pooling_cpu.cpp
354 lines (324 loc) · 15.4 KB
/
global_pooling_cpu.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
/*
* Copyright (c) 2020 NVIDIA Corporation.
* Copyright (c) 2018-2020 Chris Choy (chrischoy@ai.stanford.edu).
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Please cite "4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural
* Networks", CVPR'19 (https://arxiv.org/abs/1904.08755) if you use any part
* of the code.
*/
#include "coordinate_map.hpp"
#include "coordinate_map_cpu.hpp"
#include "coordinate_map_key.hpp"
#include "coordinate_map_manager.hpp"
#include "errors.hpp"
#include "types.hpp"
#include "utils.hpp"
#include "pooling_avg_kernel.hpp"
#include "pooling_max_kernel.hpp"
#include <pybind11/pybind11.h>
#include <torch/extension.h>
namespace minkowski {
template <typename coordinate_type>
std::tuple<at::Tensor, at::Tensor>
GlobalPoolingForwardCPU(at::Tensor const &in_feat,
PoolingMode::Type const pooling_mode, //
CoordinateMapKey *p_in_map_key, //
CoordinateMapKey *p_out_map_key, //
cpu_manager_type<coordinate_type> *p_map_manager) {
ASSERT(in_feat.is_contiguous(), "in_feat must be contiguous");
ASSERT(!in_feat.is_cuda(), "in_feat must be on CPU");
ASSERT(in_feat.dim() == 2, "Invalid in_feat.dim():", in_feat.dim());
coordinate_map_key_type in_key = p_in_map_key->get_key();
ASSERT(p_map_manager->exists(in_key) || p_map_manager->exists_field(in_key),
ERROR_MAP_NOT_FOUND);
ASSERT(in_feat.size(0) == p_map_manager->size(in_key), "Invalid in_feat size",
in_feat.size(0), "!=", p_map_manager->size(in_key));
ASSERT(pooling_mode == PoolingMode::GLOBAL_SUM_POOLING_DEFAULT ||
pooling_mode == PoolingMode::GLOBAL_AVG_POOLING_DEFAULT ||
pooling_mode == PoolingMode::GLOBAL_MAX_POOLING_DEFAULT ||
pooling_mode == PoolingMode::GLOBAL_SUM_POOLING_KERNEL ||
pooling_mode == PoolingMode::GLOBAL_AVG_POOLING_KERNEL ||
pooling_mode == PoolingMode::GLOBAL_MAX_POOLING_KERNEL ||
pooling_mode == PoolingMode::GLOBAL_SUM_POOLING_PYTORCH_INDEX ||
pooling_mode == PoolingMode::GLOBAL_AVG_POOLING_PYTORCH_INDEX ||
pooling_mode == PoolingMode::GLOBAL_MAX_POOLING_PYTORCH_INDEX,
"Invalid pooling mode");
bool const is_field = p_map_manager->exists_field(in_key);
if (!p_out_map_key->is_key_set()) {
LOG_DEBUG("Setting the output key");
if (is_field) {
coordinate_map_key_type out_key =
std::get<0>(p_map_manager->origin_field());
p_out_map_key->set_key(out_key);
LOG_DEBUG("out_key", out_key);
} else {
coordinate_map_key_type out_key = std::get<0>(p_map_manager->origin());
p_out_map_key->set_key(out_key);
LOG_DEBUG("out_key", out_key);
}
}
int64_t const batch_size = p_map_manager->origin_map_size();
bool const use_avg =
pooling_mode == PoolingMode::GLOBAL_AVG_POOLING_DEFAULT ||
pooling_mode == PoolingMode::GLOBAL_AVG_POOLING_KERNEL ||
pooling_mode == PoolingMode::GLOBAL_AVG_POOLING_PYTORCH_INDEX;
if (batch_size == 1) {
// Simple reduction
if (pooling_mode == PoolingMode::GLOBAL_MAX_POOLING_DEFAULT ||
pooling_mode == PoolingMode::GLOBAL_MAX_POOLING_KERNEL ||
pooling_mode == PoolingMode::GLOBAL_MAX_POOLING_PYTORCH_INDEX) {
auto pair = in_feat.max(0, true);
return {std::get<0>(pair), std::get<1>(pair).to(torch::kInt)};
} else {
auto out_feat = in_feat.sum(0, true);
auto num_nonzero = torch::zeros({batch_size}, in_feat.options());
if (use_avg)
out_feat /= in_feat.size(0);
num_nonzero[0] = in_feat.size(0);
return {out_feat, num_nonzero};
}
} else {
// batch_size > 1
// TODO Default to specific pooling mode conversion.
// Regular case
// if (pooling_mode == 0)
// pooling_mode = in_feat.size(0) / batch_size > 100 ? 1 : 2;
// origin kernel map
if (pooling_mode == PoolingMode::GLOBAL_SUM_POOLING_KERNEL ||
pooling_mode == PoolingMode::GLOBAL_AVG_POOLING_KERNEL ||
pooling_mode == PoolingMode::GLOBAL_SUM_POOLING_PYTORCH_INDEX ||
pooling_mode == PoolingMode::GLOBAL_AVG_POOLING_PYTORCH_INDEX) {
auto out_feat =
torch::zeros({batch_size, in_feat.size(1)}, in_feat.options());
auto num_nonzero = torch::zeros({batch_size}, in_feat.options());
// If the policy is GlobalPoolingMode.INDEX_SELECT
switch (pooling_mode) {
case PoolingMode::GLOBAL_SUM_POOLING_PYTORCH_INDEX:
case PoolingMode::GLOBAL_AVG_POOLING_PYTORCH_INDEX: {
std::vector<at::Tensor> vec_maps;
at::Tensor batch_index;
LOG_DEBUG("get origin_map_th");
if (is_field) {
auto batch_map_pair =
p_map_manager->origin_field_map_th(p_in_map_key);
batch_index = batch_map_pair.first;
vec_maps = batch_map_pair.second;
} else {
auto batch_map_pair = p_map_manager->origin_map_th(p_in_map_key);
batch_index = batch_map_pair.first;
vec_maps = batch_map_pair.second;
}
ASSERT(batch_index.numel() == batch_size, "Invalid batch_size");
LOG_DEBUG("batch wise avg.", vec_maps.size());
for (int b = 0; b < batch_size; ++b) {
LOG_DEBUG("batch ", b, "size", vec_maps[b].numel());
if (use_avg)
out_feat[batch_index[b]] =
in_feat.index_select(0, vec_maps[b]).mean(0);
else
out_feat[batch_index[b]] =
in_feat.index_select(0, vec_maps[b]).sum(0);
num_nonzero[batch_index[b]] = vec_maps[b].numel();
}
} break;
case PoolingMode::GLOBAL_SUM_POOLING_KERNEL:
case PoolingMode::GLOBAL_AVG_POOLING_KERNEL: {
if (is_field) {
const auto &in_outs = p_map_manager->origin_field_map(p_in_map_key);
AT_DISPATCH_FLOATING_TYPES(
in_feat.scalar_type(), "global_pooling_forward_cpu", [&] {
NonzeroAvgPoolingForwardKernelCPU<scalar_t, int>(
in_feat.template data_ptr<scalar_t>(),
out_feat.template data_ptr<scalar_t>(),
num_nonzero.template data_ptr<scalar_t>(), in_feat.size(1),
in_outs.first, in_outs.second, batch_size, use_avg);
});
} else {
const auto &in_outs = p_map_manager->origin_map(p_in_map_key);
AT_DISPATCH_FLOATING_TYPES(
in_feat.scalar_type(), "global_pooling_forward_cpu", [&] {
NonzeroAvgPoolingForwardKernelCPU<scalar_t, int>(
in_feat.template data_ptr<scalar_t>(),
out_feat.template data_ptr<scalar_t>(),
num_nonzero.template data_ptr<scalar_t>(), in_feat.size(1),
in_outs.first, in_outs.second, batch_size, use_avg);
});
}
} break;
default:
ASSERT(false, "Invalid pooling mode");
}
return {out_feat, num_nonzero};
} else {
// Max pool
auto out_feat =
torch::zeros({batch_size, in_feat.size(1)}, in_feat.options());
at::Tensor max_index = torch::empty({batch_size, in_feat.size(1)},
torch::TensorOptions()
.device(in_feat.device())
.dtype(torch::kInt)
.requires_grad(false));
switch (pooling_mode) {
case PoolingMode::GLOBAL_MAX_POOLING_KERNEL:
// TODO
case PoolingMode::GLOBAL_MAX_POOLING_PYTORCH_INDEX: {
if (is_field) {
const auto &in_outs = p_map_manager->origin_field_map(p_in_map_key);
AT_DISPATCH_FLOATING_TYPES(
in_feat.scalar_type(), "global_pooling_forward_cpu", [&] {
MaxPoolingForwardKernelCPU<scalar_t, int32_t,
default_types::index_type>(
in_feat.template data_ptr<scalar_t>(),
out_feat.template data_ptr<scalar_t>(),
max_index.template data_ptr<int32_t>(), in_feat.size(1),
in_outs.first, in_outs.second, batch_size);
});
} else {
const auto &in_outs = p_map_manager->origin_map(p_in_map_key);
AT_DISPATCH_FLOATING_TYPES(
in_feat.scalar_type(), "global_pooling_forward_cpu", [&] {
MaxPoolingForwardKernelCPU<scalar_t, int32_t,
default_types::index_type>(
in_feat.template data_ptr<scalar_t>(),
out_feat.template data_ptr<scalar_t>(),
max_index.template data_ptr<int32_t>(), in_feat.size(1),
in_outs.first, in_outs.second, batch_size);
});
}
} break;
default:
ASSERT(false, "Invalid pooling mode");
}
return {out_feat, max_index};
}
}
}
template <typename coordinate_type>
at::Tensor
GlobalPoolingBackwardCPU(at::Tensor const &in_feat, at::Tensor &grad_out_feat,
at::Tensor const &num_nonzero,
PoolingMode::Type const pooling_mode, //
CoordinateMapKey *p_in_map_key, //
CoordinateMapKey *p_out_map_key, //
cpu_manager_type<coordinate_type> *p_map_manager) {
ASSERT(!grad_out_feat.is_cuda(), "grad_out_feat must be on CPU");
ASSERT(grad_out_feat.dim() == 2,
"Invalid grad_out_feat.dim():", grad_out_feat.dim());
if (!grad_out_feat.is_contiguous())
grad_out_feat = grad_out_feat.contiguous();
ASSERT(in_feat.scalar_type() == grad_out_feat.scalar_type(), "type mismatch");
coordinate_map_key_type in_key = p_in_map_key->get_key();
ASSERT(p_map_manager->exists(in_key) || p_map_manager->exists_field(in_key),
ERROR_MAP_NOT_FOUND);
coordinate_map_key_type out_key = p_out_map_key->get_key();
ASSERT(p_map_manager->exists(out_key), ERROR_MAP_NOT_FOUND);
ASSERT(grad_out_feat.size(0) == p_map_manager->size(out_key),
"Invalid grad_out size", grad_out_feat.size(0),
"!=", p_map_manager->size(out_key));
ASSERT(in_feat.size(1) == grad_out_feat.size(1),
"Input feature size and kernel size mismatch");
ASSERT(pooling_mode == PoolingMode::GLOBAL_SUM_POOLING_DEFAULT ||
pooling_mode == PoolingMode::GLOBAL_AVG_POOLING_DEFAULT ||
pooling_mode == PoolingMode::GLOBAL_MAX_POOLING_DEFAULT ||
pooling_mode == PoolingMode::GLOBAL_SUM_POOLING_KERNEL ||
pooling_mode == PoolingMode::GLOBAL_AVG_POOLING_KERNEL ||
pooling_mode == PoolingMode::GLOBAL_MAX_POOLING_KERNEL ||
pooling_mode == PoolingMode::GLOBAL_SUM_POOLING_PYTORCH_INDEX ||
pooling_mode == PoolingMode::GLOBAL_AVG_POOLING_PYTORCH_INDEX ||
pooling_mode == PoolingMode::GLOBAL_MAX_POOLING_PYTORCH_INDEX,
"Invalid pooling mode");
bool const is_field = p_map_manager->exists_field(in_key);
const auto batch_size = p_map_manager->size(out_key);
bool const use_avg =
pooling_mode == PoolingMode::GLOBAL_AVG_POOLING_DEFAULT ||
pooling_mode == PoolingMode::GLOBAL_AVG_POOLING_KERNEL ||
pooling_mode == PoolingMode::GLOBAL_AVG_POOLING_PYTORCH_INDEX;
auto grad_in_feat = torch::empty_like(in_feat);
// TODO Default to specific pooling mode conversion.
// Regular case
// if (pooling_mode == 0)
// pooling_mode = in_feat.size(0) / batch_size > 100 ? 1 : 2;
if (pooling_mode == PoolingMode::GLOBAL_SUM_POOLING_DEFAULT ||
pooling_mode == PoolingMode::GLOBAL_AVG_POOLING_DEFAULT ||
pooling_mode == PoolingMode::GLOBAL_SUM_POOLING_KERNEL ||
pooling_mode == PoolingMode::GLOBAL_AVG_POOLING_KERNEL ||
pooling_mode == PoolingMode::GLOBAL_SUM_POOLING_PYTORCH_INDEX ||
pooling_mode == PoolingMode::GLOBAL_AVG_POOLING_PYTORCH_INDEX) {
LOG_DEBUG("GLOBAL_POOLING");
if (batch_size == 1) {
if (use_avg) {
LOG_DEBUG("Copying grad_out_feat. size:", in_feat.size(0));
grad_in_feat.copy_(grad_out_feat / in_feat.size(0));
} else
grad_in_feat.copy_(grad_out_feat);
} else {
if (is_field) {
const auto &in_outs = p_map_manager->origin_field_map(p_in_map_key);
grad_in_feat.zero_();
AT_DISPATCH_FLOATING_TYPES(
in_feat.scalar_type(), "global_pooling_backward_cpu", [&] {
NonzeroAvgPoolingBackwardKernelCPU<scalar_t, int>(
grad_in_feat.template data_ptr<scalar_t>(), in_feat.size(0),
grad_out_feat.template data_ptr<scalar_t>(),
num_nonzero.template data_ptr<scalar_t>(), in_feat.size(1),
in_outs.first, in_outs.second, use_avg);
});
} else {
const auto &in_outs = p_map_manager->origin_map(p_in_map_key);
grad_in_feat.zero_();
AT_DISPATCH_FLOATING_TYPES(
in_feat.scalar_type(), "global_pooling_backward_cpu", [&] {
NonzeroAvgPoolingBackwardKernelCPU<scalar_t, int>(
grad_in_feat.template data_ptr<scalar_t>(), in_feat.size(0),
grad_out_feat.template data_ptr<scalar_t>(),
num_nonzero.template data_ptr<scalar_t>(), in_feat.size(1),
in_outs.first, in_outs.second, use_avg);
});
}
}
} else {
grad_in_feat.zero_();
AT_DISPATCH_FLOATING_TYPES(
in_feat.scalar_type(), "global_pooling_backward_cpu", [&] {
MaxPoolingBackwardKernelCPU<scalar_t, int32_t>(
grad_in_feat.template data_ptr<scalar_t>(), in_feat.size(0),
grad_out_feat.template data_ptr<scalar_t>(),
grad_out_feat.size(0), num_nonzero.template data_ptr<int32_t>(),
in_feat.size(1));
});
}
return grad_in_feat;
}
template std::tuple<at::Tensor, at::Tensor>
GlobalPoolingForwardCPU<default_types::dcoordinate_type>(
at::Tensor const &in_feat,
PoolingMode::Type const pooling_mode, //
CoordinateMapKey *p_in_map_key, //
CoordinateMapKey *p_out_map_key, //
cpu_manager_type<default_types::dcoordinate_type> *p_map_manager);
template at::Tensor GlobalPoolingBackwardCPU<default_types::dcoordinate_type>(
at::Tensor const &in_feat, at::Tensor &grad_out_feat,
at::Tensor const &num_nonzero,
PoolingMode::Type const pooling_mode, //
CoordinateMapKey *p_in_map_key, //
CoordinateMapKey *p_out_map_key, //
cpu_manager_type<default_types::dcoordinate_type> *p_map_manager);
} // end namespace minkowski