Skip to content

Commit 344c212

Browse files
InonSInonS
InonS
authored and
InonS
committed
Create IterationGenerators.py
1 parent 092c8b0 commit 344c212

File tree

1 file changed

+228
-0
lines changed

1 file changed

+228
-0
lines changed

IterationGenerators.py

+228
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,228 @@
1+
#! /usr/bin/python
2+
3+
# e-satis @ stackoverflow: http://stackoverflow.com/questions/231767/the-python-yield-keyword-explained
4+
5+
# Iteration : Going over items in a list, one-by-one
6+
7+
myList=[1,2,3]
8+
for i in myList: # "for X in Y" is an iteration pattern
9+
print i,
10+
print
11+
12+
# The retrieval of the next item using the iterator is done by calling its next() method.
13+
14+
#==========
15+
print
16+
17+
# Iterables
18+
# In the example above, 'myList' is an iterable object, because it comprises items which can be iterated over.
19+
20+
myList2= [ x*x for x in range(3)] # creating a list using list comprehension
21+
for i in myList2: # every Y you can use "for X in Y" on is an iterable: Arrays (lists/tuples/dictionaries/strings), files, ... (this independence of variable type is called duck typing: "If it walks like a duck...")
22+
print i,
23+
print
24+
25+
# Iterating over an iterable is repeatable and non-destructive of the iterable.
26+
# The iterable objects become very large if all possible values need to be stored in memory in advance.
27+
28+
#=====================================================================
29+
print
30+
31+
# Generators: Iterators which generate the iteration values on-the-fly
32+
# i.e. the values are not all stored in memory in advance,
33+
# but can only be iterated over once.
34+
35+
myGenerator=(x*x for x in range(3))
36+
print myGenerator # 'myGenerator' is an initerable 'generator object'
37+
for i in myGenerator:
38+
print i,
39+
print
40+
41+
# Once this 'for' loop reaches its end, you can't 'for i in myGenerator' again...
42+
# 'myGenerator' evaluates inside the loop, not before it (lazy evaluation)
43+
# this improves performace, especially for large lists.
44+
45+
print "Timing. This may take a few seconds..."
46+
import timeit
47+
print timeit.timeit('sum(xrange(200))',setup='') # uses generator
48+
print timeit.timeit('sum(range(200))',setup='') # does not use generator
49+
50+
51+
#=============================================================================
52+
print
53+
54+
# Yield: a keyword used like 'return', in a function which returns a generator
55+
# c.f. function returning a function object
56+
57+
def createGenerator():
58+
myList3=range(3)
59+
for i in myList3:
60+
yield i*i # this function returns the generator '(i*i for i in range(3))'
61+
62+
myGenerator=createGenerator()
63+
print myGenerator # 'myGenerator' is an initerable 'generator object'
64+
for i in myGenerator:
65+
print i,
66+
print
67+
68+
69+
#===================================
70+
print
71+
72+
# Controlling a generator exhaustion
73+
74+
#create Bank class, which can create ATMs
75+
class Bank():
76+
crisis=False
77+
def create_atm(self):
78+
while not self.crisis:
79+
yield "$100"
80+
81+
#when everything's OK, the ATM gives you as much money as you want (each iterative withdrawls yields $100)
82+
bank=Bank()
83+
beforeCrisisATM=bank.create_atm()
84+
print [beforeCrisisATM.next() for i in range(9)]
85+
86+
# Create a crisis, so that new ATM's will not be able to dispense cash
87+
bank.crisis=True
88+
try:
89+
print beforeCrisisATM.next()
90+
except StopIteration:
91+
print "beforeCrisisATM threw StopIteration exception!"
92+
93+
# Creating a new ATM won't help, because the bank is still in crisis
94+
duringCrisisATM=bank.create_atm()
95+
try:
96+
print duringCrisisATM.next()
97+
except StopIteration:
98+
print "duringCrisisATM threw StopIteration exception!"
99+
100+
# The trouble is, even post-crisis, the ATMs remain empty,
101+
# because once the generator ran out for watever reason
102+
# (e.g. due to an if/else statement such as in the Bank() case)
103+
# there is no place for the iterator to pick up, and the generator is dead.
104+
bank.crisis=False
105+
try:
106+
print beforeCrisisATM.next()
107+
except StopIteration:
108+
print "beforeCrisisATM threw StopIteration exception!"
109+
try:
110+
print duringCrisisATM.next()
111+
except StopIteration:
112+
print "duringCrisisATM threw StopIteration exception!"
113+
114+
# However, if we now build another ATM, this new one doesn't know about the past crisis
115+
postCrisisATM=bank.create_atm()
116+
print postCrisisATM.next()
117+
print postCrisisATM.next()
118+
print postCrisisATM.next()
119+
120+
121+
#=====================
122+
print
123+
124+
# The itertools module
125+
import itertools
126+
127+
# e.g. possible orders of arrival for a 4 horse race (i.e. all permutations of four items)
128+
horses=[1,2,3,4]
129+
races=itertools.permutations(horses)
130+
print races
131+
print list(races)
132+
133+
134+
#==================
135+
print
136+
137+
# Generator Pattern
138+
139+
class FirstN(object):
140+
def __init__(self, n):
141+
self.n=n
142+
143+
def __iter__(self):
144+
return self
145+
146+
#sumOfFirstN=sum(FirstN(100))
147+
148+
#===========
149+
print
150+
151+
# Example: Fibonacci sequence (http://stackoverflow.com/questions/3953749/python-fibonacci-generator)
152+
153+
fibSeqLength = int(raw_input("Enter Fibonacci sequence length:"))
154+
155+
# Iteration generation using the yield keyword:
156+
# This implementations do not store the entire sequence, and therefore the memory taken does not scale with 'fibSeqLength'
157+
def fibYield():
158+
a, b = 0, 1 # base case
159+
while True:
160+
yield a # return a generator to iterate 'a'
161+
a, b = b, a + b # promote values of the next elements in the sequence
162+
163+
a=fibYield() # 'a' is now the object returned by 'fibYield()' -- a generator
164+
165+
for i in range(fibSeqLength): # loop for all elements in input range
166+
print a.next(), # print the value of the next iteration
167+
print
168+
169+
# Using iteration over list data-structure
170+
# Since this implementation stores the entire sequence to a list, its memory requirement scales with 'fibSeqLength'
171+
def fibList(n):
172+
a, b = 0, 1
173+
for i in xrange(n):
174+
yield a
175+
a, b = b, a + b
176+
177+
print list(fibList(fibSeqLength))
178+
179+
# Using anaylitical golden ratio expression:
180+
181+
sqrt5=pow(5,0.5)
182+
goldenRatio=(1 + sqrt5)/2
183+
184+
def fibGoldenRatio(n):
185+
return int( (pow(goldenRatio, n) - pow(1-goldenRatio, n))/sqrt5)
186+
187+
for n in range(fibSeqLength):
188+
print fibGoldenRatio(n),
189+
print
190+
191+
#===========================================================
192+
print
193+
194+
# Example: Self expanding binary tree search for node values distanced in given range from some reference object ('distance' in this respect is defined elswhere)
195+
196+
# In the following example we will use the extend() keyword:
197+
myList4=['a','b']
198+
myList5=['c','d']
199+
myList4.extend(myList5)
200+
print myList4
201+
202+
print
203+
# Prequisites:
204+
class node(object): # 'node' object class
205+
_values, _median = 0, 0# some attributes of this node
206+
_leftchild=None # reference to left child node, if one exists
207+
_rightchild=None # reference to right child node, if one exists
208+
209+
def _get_dist(self, obj): # somehow claculates the "distance" between the node and some reference object 'obj'
210+
pass
211+
212+
def _get_child_candidates(self, distance, min_dist, max_dist): # 'node' object method returning generators to iterate over children, if there are any (threfore called child candidates)
213+
if self._leftchild and distance - max_dist < self._median: # if there exists a child on the node's left, and the distance to it is small enough, generate an iterator
214+
yield self._leftchild
215+
if self._rightchild and distance + max_dist >= self._median: # equivalent for child on node's right
216+
yield self._rightchild
217+
# If the function arrives here, the generator will be considered empty (there are only two children at most -- a binary tree)
218+
219+
220+
# Caller (from within some other function):
221+
result, candidates = list(), [self] # Create an empty list and a list with the current object reference
222+
while candidates: # Loop on children candidates (starting from the head node)
223+
node = candidates.pop() # Get the last candidate and remove it from the list
224+
distance = node._get_dist(obj) # Get the distance between the candidate node and some reference object 'obj'
225+
if distance <= max_dist and distance >= min_dist: # If the candidate node's distance from the reference object is in the range [min_dist:max_dist], add the candidate node values to the result list (uses the 'extend' keyword)
226+
result.extend(node._values)
227+
candidates.extend(node._get_child_candidates(distance, min_dist, max_dist)) # extend the list of candidates by executing the generator function above to get the child candidates of the current node. Thus, the loop will keep running until it will have looked at all the children of the children of the children, etc. of the head node
228+
#return result

0 commit comments

Comments
 (0)