Skip to content

Latest commit

 

History

History
83 lines (68 loc) · 2.81 KB

index.md

File metadata and controls

83 lines (68 loc) · 2.81 KB

HypergeometricFunctions.jl Documentation

Introduction

HypergeometricFunctions.jl provides a numerical computation of generalized hypergeometric functions. The main exported function and recommended interface is pFq, but there are a few others for specialists' convenience.

pFq

Complex phase portraits

Broadly speaking, there are three classes of generalized hypergeometric functions: when p q they are entire functions of the complex variable z ; when p = q + 1 , they are analytic functions in the cut plane C [ 1 , ) ; and, when p > q + 1 , they are analytic functions in the cut plane C [ 0 , ) .

Examples of each of these classes are illustrated over

Missing or unrecognized delimiter for \left

$\left{z\in\mathbb{C} : -10<\Re z<10, -10<\Im z<10\right}$
with complex phase portraits, a beautiful tool in computational complex analysis.

using ComplexPhasePortrait, HypergeometricFunctions, Images
x = range(-10, stop=10, length=300)
y = range(-10, stop=10, length=300)
z = x' .+ im*y

import Logging # To avoid printing warnings
Logging.with_logger(Logging.SimpleLogger(Logging.Error)) do
    img = portrait(map(z->pFq((), (), z), z), ctype = "nist")
    save("0F0.png", img)
    img = portrait(map(z->pFq((), (1.0, ), z), z), ctype = "nist")
    save("0F1.png", img)
    img = portrait(map(z->pFq((0.5, ), (0.75, ), z), z), ctype = "nist")
    save("1F1.png", img)
    img = portrait(map(z->pFq((3.5+7.5im, ), (), z), z), ctype = "nist")
    save("1F0.png", img)
    img = portrait(map(z->pFq((1.0, 3.5+7.5im), (0.75, ), z), z), ctype = "nist")
    save("2F1.png", img)
    img = portrait(map(z->pFq((1.0, 1.5+7.5im), (), z), z), ctype = "nist")
    save("2F0.png", img)
end
nothing # hide
p\q 0 1
0 ₀F₀ ₀F₁
1 ₁F₀ ₁F₁
2 ₂F₀ ₂F₁

Library

_₁F₁
_₂F₁
_₃F₂

Internals

HypergeometricFunctions.M
HypergeometricFunctions.U
HypergeometricFunctions._₂F₁positive
HypergeometricFunctions._₂F₁general
HypergeometricFunctions._₂F₁general2
HypergeometricFunctions.pFqdrummond
HypergeometricFunctions.pFqweniger
HypergeometricFunctions.pFqcontinuedfraction
HypergeometricFunctions.pochhammer
HypergeometricFunctions.@clenshaw
HypergeometricFunctions.@lanczosratio
HypergeometricFunctions.G
HypergeometricFunctions.P

Logo

using ComplexPhasePortrait, HypergeometricFunctions, Images
x = range(-1, stop=3, length=300)
y = range(-2, stop=2, length=300)
z = x' .+ im*y
img = portrait(map(z->pFq((4.25, -10.5), (7.5 + 10.0*im, ), z), z), ctype = "nist")
save("assets/logo.png", img)
nothing # hide