forked from orbingol/NURBS-Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCPGen.py
328 lines (267 loc) · 12.6 KB
/
CPGen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
"""
.. module:: CPGen
:platform: Unix, Windows
:synopsis: A simple control points grid generator for parametric surfaces
.. moduleauthor:: Onur Rauf Bingol <orbingol@gmail.com>
"""
import random
import warnings
from ._utilities import export
@export
class Grid(object):
""" Simple control points grid generator to use with non-rational surfaces.
This class stores grid points in [x, y, z] format and the grid (control) points can be retrieved from the
:py:attr:`grid` attribute. The z-coordinate of the control points can be set via the keyword argument ``z_value``
while initializing the class.
:param size_x: width of the grid
:type size_x: float
:param size_y: height of the grid
:type size_y: float
"""
def __init__(self, size_x, size_y, **kwargs):
self._origin = [0.0, 0.0, 0.0] # Grid origin (always set to the bottom left corner of the grid)
self._size_x = float(size_x) # width of the grid
self._size_y = float(size_y) # height of the grid
self._size_u = 0 # grid size in x-direction
self._size_v = 0 # grid size in y-direction
self._z_value = kwargs.get('z_value', 0.0) # z-coordinate of the grid points
self._grid_points = [] # 2-dimensional grid (control) points
self._delta = 10e-8 # default tolerance
self._cache = {} # cache dictionary
def __len__(self):
if not self._grid_points:
return 0
return len(self._grid_points) * len(self._grid_points[0])
@property
def grid(self):
""" Grid points.
Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details
on using this class member.
:getter: Gets the 2-dimensional list of points in [u][v] format
"""
return self._grid_points
# Resets the grid to its initial state
def reset(self):
""" Resets the grid. """
if self._grid_points:
self._grid_points[:] = []
self._size_u = 0
self._size_v = 0
self._origin = [0.0, 0.0, 0.0]
# Generates the grid using the input division parameters
def generate(self, num_u, num_v):
""" Generates grid using the input division parameters.
:param num_u: number of divisions in x-direction
:type num_u: int
:param num_v: number of divisions in y-direction
:type num_v: int
"""
# Some error checking and fixing
if num_u < 1:
raise ValueError("Divisions in the x-direction (num_u) cannot be less than 1")
if num_v < 1:
raise ValueError("Divisions in the y-direction (num_v) cannot be less than 1")
if not isinstance(num_u, int):
num_u = int(num_u)
warnings.warn("%d will be used as the value of num_u" % num_u, UserWarning)
if not isinstance(num_v, int):
num_v = int(num_v)
warnings.warn("%d will be used as the value of num_v" % num_v, UserWarning)
# Reset the grid
self.reset()
# Set the number of divisions for each direction
spacing_x = self._size_x / num_u
spacing_y = self._size_y / num_v
# Set initial position for x
current_x = self._origin[0]
# Start looping
for _ in range(0, num_u + 1):
# Initialize a temporary list for storing the 3nd dimension
row = []
# Set initial position for y
current_y = self._origin[1]
for _ in range(0, num_v + 1):
# Add the first point
row.append([current_x, current_y, self._z_value])
# Set the y value for the next row
current_y = current_y + spacing_y
# Update the list to be returned
self._grid_points.append(row)
# Set x the value for the next column
current_x = current_x + spacing_x
# Set class variables
self._size_u = num_u
self._size_v = num_v
# Generates hills (a.k.a. bumps) on the grid
def bumps(self, num_bumps, **kwargs):
""" Generates arbitrary bumps (i.e. hills) on the 2-dimensional grid.
This method generates hills on the grid defined by the **num_bumps** argument. It is possible to control the
z-value using **bump_height** argument. **bump_height** can be a positive or negative numeric value or it can
be a list of numeric values.
Please note that, not all grids can be modified to have **num_bumps** number of bumps. Therefore, this function
uses a brute-force algorithm to determine whether the bumps can be generated or not. For instance::
test_grid = Grid(5, 10) # generates a 5x10 rectangle
test_grid.generate(4, 4) # splits the rectangle into 2x2 pieces
test_grid.bumps(100) # impossible, it will return an error message
test_grid.bumps(1) # You will get a bump at the center of the generated grid
This method accepts the following keyword arguments:
* ``bump_height``: z-value of the generated bumps on the grid. *Default: 5.0*
* ``base_extent``: extension of the hill base from its center in terms of grid points. *Default: 2*
* ``base_adjust``: padding between the bases of the hills. *Default: 0*
:param num_bumps: number of bumps (i.e. hills) to be generated on the 2D grid
:type num_bumps: int
"""
bump_height = kwargs.get("bump_height", 5.0)
base_extent = kwargs.get("base_extent", 2)
padding = kwargs.get('base_adjust', 0)
max_trials = kwargs.get("max_trials", 25)
# Check if the grid points are generated
if not self._grid_points:
raise RuntimeError("Grid must be generated before calling this function")
if not isinstance(num_bumps, int):
num_bumps = int(num_bumps)
warnings.warn("Number of bumps must be an integer value. Automatically rounding to %d" % num_bumps,
UserWarning)
if isinstance(bump_height, (list, tuple)):
if len(bump_height) != num_bumps:
raise ValueError("Number of bump heights must be equal to number of bumps")
else:
bump_height_is_array = True
else:
bump_height_is_array = False
bump_height = [float(bump_height)]
if base_extent < 1:
raise ValueError("Base size must be bigger than 1 grid point")
if (2 * base_extent) + padding > self._size_u \
or (2 * base_extent) + padding > self._size_v:
raise ValueError("The area of the base must be less than the area of the grid")
# Initialize a list to store bumps
bump_list = []
# Find size of the grid
len_u = len(self._grid_points)
len_v = len(self._grid_points[0])
# Set a max number of trials for the point finding algorithm
max_trials = int(max_trials)
# Try to generate bumps
for _ in range(0, num_bumps):
trials = 0
while trials < max_trials:
# Choose u and v positions inside the grid (i.e. not on the edges)
u = random.randint(base_extent, (len_u - 1) - base_extent)
v = random.randint(base_extent, (len_v - 1) - base_extent)
temp = [u, v]
if self._check_bump(bump_list, temp, base_extent, padding):
bump_list.append(temp)
trials = max_trials + 1 # set number of trials to a big value
break
else:
trials = trials + 1
if trials == max_trials:
raise RuntimeError("Cannot generate %d bumps with a base extent of %d on this grid. "
"You need to generate a grid larger than %dx%d."
% (num_bumps, base_extent, self._size_u, self._size_v))
idx = 0
# Update the grid with the bumps
for u, v in bump_list:
h_increment = bump_height[idx] / base_extent
height = h_increment
for j in range(base_extent - 1, -1, -1):
self._create_bump(u, v, j, height)
height += h_increment
if bump_height_is_array:
idx += 1
# Checks the possibility of placing the bump at the specified location
def _check_bump(self, uv_list, to_be_checked_uv, base_extent, padding):
# If input list is empty, return true
if not uv_list:
return True
# Check the input point or its surroundings are close to the existing ones
for uv in uv_list:
u = to_be_checked_uv[0]
v = to_be_checked_uv[1]
check_list = []
for ur in range(-(base_extent + 1 + padding), base_extent + 2 + padding):
for vr in range(-(base_extent + 1 + padding), base_extent + 2 + padding):
check_list.append([u + ur, v + vr])
for check in check_list:
if abs(uv[0] - check[0]) < self._delta and abs(uv[1] - check[1]) < self._delta:
return False
# Otherwise, return true
return True
def _create_bump(self, u, v, jump, height):
# Find corner
start_u = u - jump
stop_u = u + jump + 1
start_v = v - jump
stop_v = v + jump + 1
for i in range(start_u, stop_u):
for j in range(start_v, stop_v):
self._grid_points[i][j][2] = height
@export
class GridWeighted(Grid):
""" Simple control points grid generator to use with rational surfaces.
This class stores grid points in [x*w, y*w, z*w, w] format and the grid (control) points can be retrieved from the
:py:attr:`grid` attribute. The z-coordinate of the control points can be set via the keyword argument ``z_value``
while initializing the class.
:param size_x: width of the grid
:type size_x: float
:param size_y: height of the grid
:type size_y: float
"""
def __init__(self, size_x, size_y, **kwargs):
super(GridWeighted, self).__init__(size_x, size_y, **kwargs)
self._weights = []
# Variables for caching
self._cache['gridptsw'] = []
@property
def weight(self):
""" Weight (w) component of the grid points.
The input can be a single int or a float value, then all weights will be set to the same value.
Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details
on using this class member.
:getter: Gets the weights vector
:setter: Sets the weights vector
"""
return self._weights
@weight.setter
def weight(self, value):
if not self._grid_points:
raise ValueError("Generate the grid first")
if isinstance(value, (int, float)):
if value <= 0:
raise ValueError("Weight value must be bigger than 0")
self._weights = [float(value) for _ in range(len(self))]
elif isinstance(value, (list, tuple)):
if len(value) != len(self):
raise ValueError("Input must be the same size with the grid points")
if all(val <= 0 for val in value):
raise ValueError("Weight values must be bigger than 0")
self._weights = [float(val) for val in value]
else:
raise TypeError("The input should be a list, tuple or a single int, float value")
def reset(self):
""" Resets the grid. """
super(GridWeighted, self).reset()
if self._grid_points or self._weights:
self._cache['gridptsw'][:] = []
self._weights[:] = []
@property
def grid(self):
""" Weighted grid points.
Please refer to the `wiki <https://github.com/orbingol/NURBS-Python/wiki/Using-Python-Properties>`_ for details
on using this class member.
:getter: Gets the 2-dimensional list of weighted points in [u][v] format
"""
# Generate default weights if they haven't been set
if not self._weights :
self._weights = [1.0 for _ in range(len(self))]
# Start adding weights, if not cached
if not self._cache['gridptsw']:
for idx, cols in enumerate(self._grid_points):
weighted_gp_row = []
for row in cols:
temp = [r * self._weights[idx] for r in row]
temp.append(self._weights[idx])
weighted_gp_row.append(temp)
self._cache['gridptsw'].append(weighted_gp_row)
return self._cache['gridptsw']