forked from orbingol/NURBS-Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconstruct.py
383 lines (323 loc) · 13.9 KB
/
construct.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
"""
.. module:: construct
:platform: Unix, Windows
:synopsis: Provides functions for constructing and extracting spline geometries
.. moduleauthor:: Onur Rauf Bingol <orbingol@gmail.com>
"""
from . import shortcuts
from . import knotvector
from . import compatibility
from .exceptions import GeomdlException
def construct_surface(direction, *args, **kwargs):
""" Generates surfaces from curves.
Arguments:
* ``args``: a list of curve instances
Keyword Arguments (optional):
* ``degree``: degree of the 2nd parametric direction
* ``knotvector``: knot vector of the 2nd parametric direction
* ``rational``: flag to generate rational surfaces
:param direction: the direction that the input curves lies, i.e. u or v
:type direction: str
:return: Surface constructed from the curves on the given parametric direction
"""
# Input validation
possible_dirs = ['u', 'v']
if direction not in possible_dirs:
raise GeomdlException("Possible direction values: " + ", ".join([val for val in possible_dirs]),
data=dict(input_dir=direction))
size_other = len(args)
if size_other < 2:
raise GeomdlException("You need to input at least 2 curves")
# Get keyword arguments
degree_other = kwargs.get('degree', 2)
knotvector_other = kwargs.get('knotvector', knotvector.generate(degree_other, size_other))
rational = kwargs.get('rational', args[0].rational)
# Construct the control points of the new surface
degree = args[0].degree
num_ctrlpts = args[0].ctrlpts_size
new_ctrlpts = []
new_weights = []
for idx, arg in enumerate(args):
if degree != arg.degree:
raise GeomdlException("Input curves must have the same degrees",
data=dict(idx=idx, degree=degree, degree_arg=arg.degree))
if num_ctrlpts != arg.ctrlpts_size:
raise GeomdlException("Input curves must have the same number of control points",
data=dict(idx=idx, size=num_ctrlpts, size_arg=arg.ctrlpts_size))
new_ctrlpts += list(arg.ctrlpts)
if rational:
if arg.weights is None:
raise GeomdlException("Expecting a rational curve",
data=dict(idx=idx, rational=rational, rational_arg=arg.rational))
new_weights += list(arg.weights)
# Set variables w.r.t. input direction
if direction == 'u':
degree_u = degree_other
degree_v = degree
knotvector_u = knotvector_other
knotvector_v = args[0].knotvector
size_u = size_other
size_v = num_ctrlpts
else:
degree_u = degree
degree_v = degree_other
knotvector_u = args[0].knotvector
knotvector_v = knotvector_other
size_u = num_ctrlpts
size_v = size_other
if rational:
ctrlptsw = compatibility.combine_ctrlpts_weights(new_ctrlpts, new_weights)
ctrlptsw = compatibility.flip_ctrlpts_u(ctrlptsw, size_u, size_v)
new_ctrlpts, new_weights = compatibility.separate_ctrlpts_weights(ctrlptsw)
else:
new_ctrlpts = compatibility.flip_ctrlpts_u(new_ctrlpts, size_u, size_v)
# Generate the surface
ns = shortcuts.generate_surface(rational)
ns.degree_u = degree_u
ns.degree_v = degree_v
ns.ctrlpts_size_u = size_u
ns.ctrlpts_size_v = size_v
ns.ctrlpts = new_ctrlpts
if rational:
ns.weights = new_weights
ns.knotvector_u = knotvector_u
ns.knotvector_v = knotvector_v
# Return constructed surface
return ns
def construct_volume(direction, *args, **kwargs):
""" Generates volumes from surfaces.
Arguments:
* ``args``: a list of surface instances
Keyword Arguments (optional):
* ``degree``: degree of the 3rd parametric direction
* ``knotvector``: knot vector of the 3rd parametric direction
* ``rational``: flag to generate rational volumes
:param direction: the direction that the input surfaces lies, i.e. u, v, w
:type direction: str
:return: Volume constructed from the surfaces on the given parametric direction
"""
# Input validation
possible_dirs = ['u', 'v', 'w']
if direction not in possible_dirs:
raise GeomdlException("Possible direction values: " + ", ".join([val for val in possible_dirs]),
data=dict(input_dir=direction))
size_other = len(args)
if size_other < 2:
raise GeomdlException("You need to input at least 2 surfaces")
# Get keyword arguments
degree_other = kwargs.get('degree', 1)
knotvector_other = kwargs.get('knotvector', knotvector.generate(degree_other, size_other))
rational = kwargs.get('rational', args[0].rational)
# Construct the control points of the new volume
degree_u, degree_v = args[0].degree_u, args[0].degree_v
size_u, size_v = args[0].ctrlpts_size_u, args[0].ctrlpts_size_v
new_ctrlpts = []
new_weights = []
for idx, arg in enumerate(args):
if degree_u != arg.degree_u or degree_v != arg.degree_v:
raise GeomdlException("Input surfaces must have the same degrees",
data=dict(idx=idx, degree=(degree_u, degree_v), degree_arg=(arg.degree_u, arg.degree_v)))
if size_u != arg.ctrlpts_size_u or size_v != arg.ctrlpts_size_v:
raise GeomdlException("Input surfaces must have the same number of control points",
data=dict(idx=idx, size=(size_u, size_v), size_arg=(arg.ctrlpts_size_u, arg.ctrlpts_size_v)))
new_ctrlpts += list(arg.ctrlpts)
if rational:
if arg.weights is None:
raise GeomdlException("Expecting a rational surface",
data=dict(idx=idx, rational=rational, rational_arg=arg.rational))
new_weights += list(arg.weights)
updated_ctrlpts = []
updated_weights = []
# Set variables w.r.t. input direction
if direction == 'u':
degree_u, degree_v, degree_w = degree_other, args[0].degree_u, args[0].degree_v
size_u, size_v, size_w = size_other, args[0].ctrlpts_size_u, args[0].ctrlpts_size_v
kv_u, kv_v, kv_w = knotvector_other, args[0].knotvector_u, args[0].knotvector_v
# u => w, v => u, w => v
for v in range(0, size_v):
for w in range(0, size_w):
for u in range(0, size_u):
temp_pt = new_ctrlpts[v + (u * size_v) + (w * size_u * size_v)]
updated_ctrlpts.append(temp_pt)
if rational:
temp_w = new_weights[v + (u * size_v) + (w * size_u * size_v)]
updated_weights.append(temp_w)
elif direction == 'v':
degree_u, degree_v, degree_w = args[0].degree_u, degree_other, args[0].degree_v
size_u, size_v, size_w = args[0].ctrlpts_size_u, size_other, args[0].ctrlpts_size_v
kv_u, kv_v, kv_w = args[0].knotvector_u, knotvector_other, args[0].knotvector_v
# u => u, v => w, w => v
for v in range(0, size_v):
for u in range(0, size_u):
for w in range(0, size_w):
temp_pt = new_ctrlpts[v + (u * size_v) + (w * size_u * size_v)]
updated_ctrlpts.append(temp_pt)
if rational:
temp_w = new_weights[v + (u * size_v) + (w * size_u * size_v)]
updated_weights.append(temp_w)
else: # direction == 'w'
degree_u, degree_v, degree_w = args[0].degree_u, args[0].degree_v, degree_other
size_u, size_v, size_w = args[0].ctrlpts_size_u, args[0].ctrlpts_size_v, size_other
kv_u, kv_v, kv_w = args[0].knotvector_u, args[0].knotvector_v, knotvector_other
updated_ctrlpts = new_ctrlpts
if rational:
updated_weights = new_weights
# Generate the volume
nv = shortcuts.generate_volume(rational)
nv.degree_u = degree_u
nv.degree_v = degree_v
nv.degree_w = degree_w
nv.ctrlpts_size_u = size_u
nv.ctrlpts_size_v = size_v
nv.ctrlpts_size_w = size_w
nv.ctrlpts = updated_ctrlpts
if rational:
nv.weights = updated_weights
nv.knotvector_u = kv_u
nv.knotvector_v = kv_v
nv.knotvector_w = kv_w
return nv
def extract_curves(psurf, **kwargs):
""" Extracts curves from a surface.
The return value is a ``dict`` object containing the following keys:
* ``u``: the curves which generate u-direction (or which lie on the v-direction)
* ``v``: the curves which generate v-direction (or which lie on the u-direction)
As an example; if a curve lies on the u-direction, then its knotvector is equal to surface's knotvector on the
v-direction and vice versa.
The curve extraction process can be controlled via ``extract_u`` and ``extract_v`` boolean keyword arguments.
:param psurf: input surface
:type psurf: abstract.Surface
:return: extracted curves
:rtype: dict
"""
if psurf.pdimension != 2:
raise GeomdlException("The input should be a spline surface")
if len(psurf) != 1:
raise GeomdlException("Can only operate on single spline surfaces")
# Get keyword arguments
extract_u = kwargs.get('extract_u', True)
extract_v = kwargs.get('extract_v', True)
# Get data from the surface object
surf_data = psurf.data
rational = surf_data['rational']
degree_u = surf_data['degree'][0]
degree_v = surf_data['degree'][1]
kv_u = surf_data['knotvector'][0]
kv_v = surf_data['knotvector'][1]
size_u = surf_data['size'][0]
size_v = surf_data['size'][1]
cpts = surf_data['control_points']
# Determine object type
obj = shortcuts.generate_curve(rational)
# v-direction
crvlist_v = []
if extract_v:
for u in range(size_u):
curve = obj.__class__()
curve.degree = degree_v
curve.set_ctrlpts([cpts[v + (size_v * u)] for v in range(size_v)])
curve.knotvector = kv_v
crvlist_v.append(curve)
# u-direction
crvlist_u = []
if extract_u:
for v in range(size_v):
curve = obj.__class__()
curve.degree = degree_u
curve.set_ctrlpts([cpts[v + (size_v * u)] for u in range(size_u)])
curve.knotvector = kv_u
crvlist_u.append(curve)
# Return shapes as a dict object
return dict(u=crvlist_u, v=crvlist_v)
def extract_surfaces(pvol):
""" Extracts surfaces from a volume.
:param pvol: input volume
:type pvol: abstract.Volume
:return: extracted surface
:rtype: dict
"""
if pvol.pdimension != 3:
raise GeomdlException("The input should be a spline volume")
if len(pvol) != 1:
raise GeomdlException("Can only operate on single spline volumes")
# Get data from the volume object
vol_data = pvol.data
rational = vol_data['rational']
degree_u = vol_data['degree'][0]
degree_v = vol_data['degree'][1]
degree_w = vol_data['degree'][2]
kv_u = vol_data['knotvector'][0]
kv_v = vol_data['knotvector'][1]
kv_w = vol_data['knotvector'][2]
size_u = vol_data['size'][0]
size_v = vol_data['size'][1]
size_w = vol_data['size'][2]
cpts = vol_data['control_points']
# Determine object type
obj = shortcuts.generate_surface(rational)
# u-v plane
surflist_uv = []
for w in range(size_w):
surf = obj.__class__()
surf.degree_u = degree_u
surf.degree_v = degree_v
surf.ctrlpts_size_u = size_u
surf.ctrlpts_size_v = size_v
surf.ctrlpts2d = [[cpts[v + (size_v * (u + (size_u * w)))] for v in range(size_v)] for u in range(size_u)]
surf.knotvector_u = kv_u
surf.knotvector_v = kv_v
surflist_uv.append(surf)
# u-w plane
surflist_uw = []
for v in range(size_v):
surf = obj.__class__()
surf.degree_u = degree_u
surf.degree_v = degree_w
surf.ctrlpts_size_u = size_u
surf.ctrlpts_size_v = size_w
surf.ctrlpts2d = [[cpts[v + (size_v * (u + (size_u * w)))] for w in range(size_w)] for u in range(size_u)]
surf.knotvector_u = kv_u
surf.knotvector_v = kv_w
surflist_uw.append(surf)
# v-w plane
surflist_vw = []
for u in range(size_u):
surf = obj.__class__()
surf.degree_u = degree_v
surf.degree_v = degree_w
surf.ctrlpts_size_u = size_v
surf.ctrlpts_size_v = size_w
surf.ctrlpts2d = [[cpts[v + (size_v * (u + (size_u * w)))] for w in range(size_w)] for v in range(size_v)]
surf.knotvector_u = kv_v
surf.knotvector_v = kv_w
surflist_vw.append(surf)
# Return shapes as a dict object
return dict(uv=surflist_uv, uw=surflist_uw, vw=surflist_vw)
def extract_isosurface(pvol):
""" Extracts the largest isosurface from a volume.
The following example illustrates one of the usage scenarios:
.. code-block:: python
:linenos:
from geomdl import construct, multi
from geomdl.visualization import VisMPL
# Assuming that "myvol" variable stores your spline volume information
isosrf = construct.extract_isosurface(myvol)
# Create a surface container to store extracted isosurface
msurf = multi.SurfaceContainer(isosrf)
# Set visualization components
msurf.vis = VisMPL.VisSurface(VisMPL.VisConfig(ctrlpts=False))
# Render isosurface
msurf.render()
:param pvol: input volume
:type pvol: abstract.Volume
:return: isosurface (as a tuple of surfaces)
:rtype: tuple
"""
if pvol.pdimension != 3:
raise GeomdlException("The input should be a spline volume")
if len(pvol) != 1:
raise GeomdlException("Can only operate on single spline volumes")
# Extract surfaces from the parametric volume
isosrf = extract_surfaces(pvol)
# Return the isosurface
return isosrf['uv'][0], isosrf['uv'][-1], isosrf['uw'][0], isosrf['uw'][-1], isosrf['vw'][0], isosrf['vw'][-1]