Skip to content

Commit 3c7ab25

Browse files
Add files via upload
In this following project we will plot different types of charts using python to draw conclusions for Recession Period vs Non Recession Period Car sales using Bar Chart Line charts Scatter Charts Pie charts
1 parent 6ecfdfe commit 3c7ab25

9 files changed

+6221
-0
lines changed

1PieChart.ipynb

Lines changed: 948 additions & 0 deletions
Large diffs are not rendered by default.

2BoxPlot.ipynb

Lines changed: 2116 additions & 0 deletions
Large diffs are not rendered by default.

3ScatterPlot (1).ipynb

Lines changed: 1184 additions & 0 deletions
Large diffs are not rendered by default.

4.3_Plotly_Basics.ipynb

Lines changed: 629 additions & 0 deletions
Large diffs are not rendered by default.

4Bubble (1).ipynb

Lines changed: 1256 additions & 0 deletions
Large diffs are not rendered by default.

LinePlot1.ipynb

Lines changed: 88 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,88 @@
1+
{
2+
"metadata": {
3+
"kernelspec": {
4+
"name": "python",
5+
"display_name": "Python (Pyodide)",
6+
"language": "python"
7+
},
8+
"language_info": {
9+
"name": ""
10+
}
11+
},
12+
"nbformat_minor": 4,
13+
"nbformat": 4,
14+
"cells": [
15+
{
16+
"cell_type": "code",
17+
"source": "%pip install seaborn\n%pip install folium",
18+
"metadata": {
19+
"trusted": true
20+
},
21+
"outputs": [],
22+
"execution_count": null
23+
},
24+
{
25+
"cell_type": "code",
26+
"source": "import numpy as np\nimport pandas as pd\n%matplotlib inline\nimport matplotlib as mpl\nimport matplotlib.pyplot as plt\nimport seaborn as sns\nimport folium",
27+
"metadata": {
28+
"trusted": true
29+
},
30+
"outputs": [],
31+
"execution_count": null
32+
},
33+
{
34+
"cell_type": "code",
35+
"source": "from js import fetch\nimport io\n\nURL = \"https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBMDeveloperSkillsNetwork-DV0101EN-SkillsNetwork/Data%20Files/historical_automobile_sales.csv\"\nresp = await fetch(URL)\ntext = io.BytesIO((await resp.arrayBuffer()).to_py())\nimport pandas as pd\ndf = pd.read_csv(text)\nprint('Data downloaded and read into a dataframe!')",
36+
"metadata": {
37+
"trusted": true
38+
},
39+
"outputs": [],
40+
"execution_count": null
41+
},
42+
{
43+
"cell_type": "code",
44+
"source": "df.describe()",
45+
"metadata": {
46+
"trusted": true
47+
},
48+
"outputs": [],
49+
"execution_count": null
50+
},
51+
{
52+
"cell_type": "code",
53+
"source": "df.columns",
54+
"metadata": {
55+
"trusted": true
56+
},
57+
"outputs": [],
58+
"execution_count": null
59+
},
60+
{
61+
"cell_type": "code",
62+
"source": "df_line = df.groupby(df['Year'])['Automobile_Sales'].mean()\n#create figure\nplt.figure(figsize=(10, 6))\ndf_line.plot(kind = 'line')\nplt.xlabel('g')\nplt.ylabel('lkg')\nplt.title('output')\nplt.show()",
63+
"metadata": {
64+
"trusted": true
65+
},
66+
"outputs": [],
67+
"execution_count": null
68+
},
69+
{
70+
"cell_type": "code",
71+
"source": "",
72+
"metadata": {
73+
"trusted": true
74+
},
75+
"outputs": [],
76+
"execution_count": null
77+
},
78+
{
79+
"cell_type": "code",
80+
"source": "",
81+
"metadata": {
82+
"trusted": true
83+
},
84+
"outputs": [],
85+
"execution_count": null
86+
}
87+
]
88+
}

code1.png

110 KB
Loading

code2.png

75.8 KB
Loading

code3.png

60.2 KB
Loading

0 commit comments

Comments
 (0)