forked from huggingface/trl
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun_sft.sh
59 lines (51 loc) · 1.46 KB
/
run_sft.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
#!/bin/bash
# This script runs an SFT example end-to-end on a tiny model using different possible configurations
# but defaults to QLoRA + PEFT
OUTPUT_DIR="test_sft/"
MODEL_NAME="HuggingFaceM4/tiny-random-LlamaForCausalLM"
DATASET_NAME="imdb"
MAX_STEPS=5
BATCH_SIZE=2
SEQ_LEN=128
# Handle extra arguments in case one passes accelerate configs.
EXTRA_ACCELERATE_ARGS=""
EXTRA_TRAINING_ARGS="""--use_peft \
--load_in_4bit
"""
# Set your number of GPUs here
NUM_GPUS=2
if [[ "${TRL_ACCELERATE_CONFIG}" == "" ]]; then
EXTRA_ACCELERATE_ARGS=""
else
EXTRA_ACCELERATE_ARGS="--config_file $TRL_ACCELERATE_CONFIG"
# For DeepSpeed configs we need to set the `--fp16` flag to comply with our configs exposed
# on `examples/accelerate_configs` and our runners do not support bf16 mixed precision training.
if [[ $TRL_ACCELERATE_CONFIG == *"deepspeed"* ]]; then
EXTRA_TRAINING_ARGS="--fp16"
else
echo "Keeping QLoRA + PEFT"
fi
fi
CMD="""
accelerate launch $EXTRA_ACCELERATE_ARGS \
--num_processes $NUM_GPUS \
--mixed_precision 'fp16' \
`pwd`/examples/scripts/sft.py \
--model_name $MODEL_NAME \
--dataset_name $DATASET_NAME \
--output_dir $OUTPUT_DIR \
--max_steps $MAX_STEPS \
--per_device_train_batch_size $BATCH_SIZE \
--max_seq_length $SEQ_LEN \
$EXTRA_TRAINING_ARGS
"""
echo "Starting program..."
{ # try
echo $CMD
eval "$CMD"
} || { # catch
# save log for exception
echo "Operation Failed!"
exit 1
}
exit 0