Skip to content

Files

Latest commit

 

History

History
  • 8.1. Distinguishing generative and discriminative models
  • 8.2. Say hello to GANs
    • 8.2.1. Breaking down the generator
    • 8.2.2. Breaking down the discriminator
    • 8.2.3. How do they learn?
  • 8.3. Architecture of GANs
  • 8.4. Demystifying GAN loss function
    • 8.4.1. Discriminator Loss
    • 8.4.2. Generator Loss
    • 8.4.3. Total Loss
    • 8.4.4. Heuristic Loss
  • 8.5. Generating images using GAN in TensorFlow
  • 8.6. DCGAN - Adding convolution to the GAN
    • 8.6.1. Deconvolutional Generator
    • 8.6.2. Convolutional Discriminator
  • 8.7. Implementing DCGAN to generate CIFAR images
  • 8.8. Least Squares GAN
  • 8.9. Building LSGAN in tensorflow
  • 8.10. WGAN - GANs with Wasserstein distance
    • 8.10.1. Are we just minimizing JS divergence in GANs?
    • 8.10.2. What is Wasserstein distance?
    • 8.10.3. Demystifying K-Lipschitz function
    • 8.10.4. Loss function of WGAN
    • 8.10.5. WGAN in Tensorflow