- 8.1. Distinguishing generative and discriminative models
- 8.2. Say hello to GANs
- 8.2.1. Breaking down the generator
- 8.2.2. Breaking down the discriminator
- 8.2.3. How do they learn?
- 8.3. Architecture of GANs
- 8.4. Demystifying GAN loss function
- 8.4.1. Discriminator Loss
- 8.4.2. Generator Loss
- 8.4.3. Total Loss
- 8.4.4. Heuristic Loss
- 8.5. Generating images using GAN in TensorFlow
- 8.6. DCGAN - Adding convolution to the GAN
- 8.6.1. Deconvolutional Generator
- 8.6.2. Convolutional Discriminator
- 8.7. Implementing DCGAN to generate CIFAR images
- 8.8. Least Squares GAN
- 8.9. Building LSGAN in tensorflow
- 8.10. WGAN - GANs with Wasserstein distance
- 8.10.1. Are we just minimizing JS divergence in GANs?
- 8.10.2. What is Wasserstein distance?
- 8.10.3. Demystifying K-Lipschitz function
- 8.10.4. Loss function of WGAN
- 8.10.5. WGAN in Tensorflow
Files
Chapter08
Folders and files
Name | Name | Last commit date | ||
---|---|---|---|---|
parent directory.. | ||||